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Preface

Our intention with this book has been to produce a
text covering the mechanics content of all the
single-subject pure mathematics and mecharics
specifications for A-level which will come into
force in September 2000, We have not followed the
syllabus of any one examination board, but have
scugh( to develop the subject in such a way as to
be accessible to al students.

We have tried to combine the best of the current
‘approach, emphasising modelling and the ‘real
world" relevance of the subject, with some of the
vitues of the more traditional texts. We have.
endeavoured to make modelling considerations the
basis of the discussion of most topics.and, where
appropriate, we have developed topics from the
Starting point of a practical problem or experiment
We have, however, not allowed this to compromise:
the need for a degree of mathematical rigour, and
have included suflicient questions leading 1
solutions in algebraic form to satisfy those with a
taste for such problemms.

A special feature of the text i the reference to a
‘number of spreadsheets, used to analyse the data
from suggested experiments or 10 explore the
implications of certain models. These can be
downloaded from the Oxford University Press
‘website (hitp://ww.oup.co.uk mechanics). While
o not claim any great sophistication for 4
itis hoped they will be a useful resource in helping
students gain a ‘fecl”for the subject.

“The order in which topics have been covered is
approximately that in which we choose to proceed
in our own teaching. Naturally, this will not accord
with everyone’s approach, and the text contains a
degree of cross-referencing 1o assist those wishing
to dip in"

‘The opening chapter of the book introduces the
ideas of modelling and the modelling cycle, and
emphasiscs the need to speify the assumptions
‘made when developing @ model and the importance
of testing the predictions of that model against
experimental data. In the next chapter, we develop
the vector tools which underpin much of the
subject. Chapter 3 explores the basic ideas of
kinematics. Thisis followed by two chapters
covering the concept of force and the all important
‘Newton's laws. We then return to kinematics for a
further three chapters, dealing with motion in two
and three dimensions, the use of calculus, the
coneept of relative velacity.

Chapter 9 explores the problem of modelling
friction, starting from a simple experimental
approach. We then examine the con

ot o fore fn Chaptr 10, snd onsidr the
conditions necessary for equilibrium. Moments arc.
then applicd in the next chapter to finding centre
of mass.

Chapters 12 and 13 are devoted to work, energy
and power and to momentum respectively. The
final six chaplers deal with the ‘harder” topics of
frameworks, cirular motion, eastcity and simple
harmonic motion, together with a discussion of
imensional analysis and an introductory treatment
of differential equations.

‘We anticipate that most students will use this book
with the guidance of s teacher, but every effort has
been made to make it readable and accessible to
those using it for sel-study or for revision. The
expostion of topics procceds by small steps and with
a large number of worked examples o reinforce the
ideas. The exercises e designed to give practice in
the rote application of techniques, but also contain



PREFACE

questions of a more esting nature. In addition, there

Thanksar ls due (0 Rob Filing and James

recent examination questions

We are grateful 10 AEB, EDEXCEL, o vasa,

N(ccu. OCR and WIEC for permission to use their
s. The answers provided for

qmuom are the sole responsibility ar e suthors.

We would like (o express our thanks the Nigel
Watts of King's School, Bruton, for the idea of
“modeling a skipper" used in the first chapter.

olson '

d the xammtion questions. Finally, we owe an
‘enormous debt of gratitude to John Day for his
painstaking and detailed work in editing the book,
and for his help and suggestions, which bave
contributed in no small measure to the final
product.

Brian Jefferson
Tony Beadsworth
pril 2000



1 Modelling

1 cannor bring a world quite rownd. alihough I patch i as I can,
WALLACE STEVENS

A group of people on holiday with Explorer Tours proposes to drive directly
across a stretch of desert from their present position A to a camp site at B.
They consult their map of the region (scale 1 cm: 1 km), which clearly marks A
and B, to decide how far they will need to drive.

‘They measure the straight line AB on their map with a ruler and find it to be
18.6em. They conclude that they will need to drive 18.6km.

When they reach B, they check the distance they have travelled and find that it
is 19.2km.

Modelling reality
These people followed a process which is fundamental to the application of
‘mathematics to real problems. They started with the real problem ...

*How far will we drive in going from A to B

set up a mathematical model

“The line AB on the map is a scale drawing of the journey.”

and from this model they obtained a solution to the problem. They then
checked their solution against reality.

Simplifying assumptions

In setting up the model, the group made three simplifying assumptions.

o Using the map distance takes no account of hills and valleys. The model
ssumes that the journey is lat. That i, that any extra distance caused by
hills is insignificant in relation to the length of the journcy. The model
would therefore tend to underestimate the actual distance driven.

D o
A /ﬁ/\ I\
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CHAPTER 1 MODELLING

 The model assumes that the journey is in an exact straight line. In
practice, it is likely that there are rocks and other obstacles w
need to circumvent. So, again, the model is likely to produce an
underestimate.

Disancefrom map

Planview - Actl ko e
 The model assumes that the journey is so short that they can safely ignore
any distortions caused by the fact that the line AB on the map is a flat
projection of a journey taking place on the curved surface of the Earth. All
map projections distort shapes and distances, the nature of the distortion
depending on the particular method of projection used.

Comparison with reality: errors

Having solved their model, the group then did the journey, enabling them to

compare tei soluton with he sctual distane raelle. n making ths

ison, they would need to be aware of sources of error, both in their
prediction and n their measurement of ey,

« Their measurement of AB on the map s at best correct to one decimal
place. This would place their predicted distance. Dp km, in the interval
18.55 < Dp < 18.65. In addition, identifying their starting and finishing
paints on he map couldonly be an approximateafi, perhaps extending
the error bounds (o 18.5 < Dp <

 They found the actual distance using the odometer on their vehicle. This
displayed 24924.6km at the start and 24943.8 km at the end of their
journey. These values are truncated to the nearest one decimal place below,

hich would put the start reading, Skm, and the finish reading, Fkm, in the
tervals 24924.6 < § < 249247 and 249438 < F < 24943.9 respectively.

© The minimum value of (F - ) is therefore 24943.8 — 249247 = 19.1 km
e e e e 12494555 24241615 el o5l

e, D ki, would therefore have error bounds 19.1 < Dy < 19.3. Even

Ui éeamesthat te neable accuracy n the odometer mecha

small enough to be insignificant over a short journey.

m was

Was the model good enough?

Once the errors had been quantified as far as possible, the group would be
able to decide whether their model was a sufficiently accurate representation
of reality for their purpose. If not, they would need to re-examine
assumptions they made and modify the model. They might, for example, be
able to obtain a larger-scale map and measure a route including detours
around likely obstacles.




THE MODELLING PROCESS

The modelling process

Allapplications of mathematies o real-vorld ‘problems fallow the same
process as the one described above, the

g eight steps:

1 Specify the real problem This should be a clear statement of the situation
and should specify the results required in the solui

‘account in the model and which should be ignored.
assumptions about the way in which certain variables are related. For
Cknmple ‘we might decide to assume that air resistance is proportional to
veloc

3 Set wp the mathematea model. I th cxample given, this was sl
drawing, but it would more usually be a set of equations describing the
‘behaviour of the simplified system.

4 Solve the mathematical model The equations should be solved to obtain the
outcome which would result from the simplified system.

5 Decide what really happens This may involve setting up an experiment or
obtaining data from published sources.

6 Quantify the likely errors There may be errors in the values used in the
model and/or in the results obtained from the experiment. Eror bounds
hould e extsbldeTo al i vakes 3 the flits onth oulcome
should be quanti

7 Compare with ,um, ‘The results from the model should be compared with
those obtained in reality 1o decide if the model provides a sufficiently
aceurate representation of the real situation. The errors mentioned in 6 need
10 be taken into account in this comparison.
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8 Modify the model If the model does not give an adequate representation of
the real situation, it is necessary to re-examine the assumptions on which it
was based. A new model should then be set up to allow for the effect of one
or more of the factors which had previously been ignored. The whole
process should then be repeated, perhaps several times, until a sufficiently
accurate model is obtained.

“This process is summarised in the flowchart on page 3.

In this ook, we concentrate on problems involving forces and the motion of

objects, but the process of mathematical modelling is common to all situations

in which mathematics is applied 1o real-world problems

Another example of modelling

‘The problem s to model the motion of a person skipping.

We first need to state the precise questions which we wish to answer, for

cxample:

® What is the relationship between the speed of the rope and the height of the
3

jump?
 ‘Are there limitations on these quantities for a given person and rope?

to list all the factors which we think might have a bearing on
the problem. This list can be as long and the factors as fanciful as you wish. It
is better to include something a bit daft than to fail to take account of an
important factor. Here is a possible list ~ you can probably think of several
‘more items.

Our next task

Length of rope.
Mass of rope

lexibility of rope
‘Thickness of o
‘Whether the rope drags on the ground
Gravity

y
Height of person

Mass of persor

Size of feet, length of arms and other physical proportions
Movement of arms and therefore the locus of rope

Speed of rope

Height of jump. Do we measure this as the movement of the person's
centre of gravity or as the gap between the feet and the ground
(bending of legs)?

Amount of time feet need 10 stay in contact with the ground in the

How “bouncy’ the ground is
Once we have our list, we must decide what assumptions to make.



ANOTHER EXAMPLE OF MODELLING

For a first, simple model we might decide that a rope, which is curved and has.
‘mass all the way along, is too complex. It would be easier mathematically to
replace it with a thin, rigid rod attached to two strings of negligible mass. In
addition, it would be simpler if we supposed that the rope is being made to
rotate at a constant speed in a circle around a fixed point in space, with the
ground being a tangent 10 the circle.

‘The simplest way to model the person would be
as a cuboid of uniformly dense material rising and
falling without any change of shape. This would
spend a fixed proportion of each cycle in contact
with the ground and the rest moving vertically
under gravity.

In this model, any resistance to the motion of the
rope or the person would be ignored.

‘The important variables are the length, r, of the strings; the speed, v, of the
rod around the cirele; the height, , of the jump; the time, 1, from the start
of the motion; and the proportion, p, of time spent in contact with the
ground. On the assumption that the rope is at the bottom of the circle when
the person is at the top of the jump, we could write equations connecting r,
v, b, p and 1. These equations would form the model and by manipulating
them we could find solutions predicting the position of the rope and the
person for any value of 1.

There would be a lower limit on the rate of skipping because the value of v
would have o be great enough to prevent the rope going slack at the top of
the circle

‘There would lso be an upper
limit because time would be
needed for the person to get
sufficiently high off the
ground to allow the passage
of the rope.

i level while th rope

Our task would now be to observe people skipping, frst to decide on a
reasonable value for p and then (o test out the predictions of our model about
the relation between the height of jump and the speed of the rope.

Itis unlikely that the model would be very good, so we would need to
reassess our assumptions. Observing skippers would help us to decide which
assumptions to modify. We would continue to refine our model and test
against observation until we regarded the predictions as sufficiently
accurate.
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Conventional terms

When stating problems in mathematics, we often use terms which imply that
cetan assumpions ar being made. For exampe, you wil e qestons
referring 10 a string as Jight. This would indicate that the mass of the string is

sufficiently small for it to be ignored.

‘The common terms are given in the table below.

Term ‘Applies to What s disregarded
Tncxtensible | Strings, rods Stretching
Light Strings, springs, rods Mass
Particle Object of negligible size | Rotational motion
Rigid Rods Bending
Small Object of negligible size | Rotational motion
Smooth Surfaces, pulleys Friction
Exercise 1

1 Do you think it would be reasonable to disregard air resistance in the following situations?
) A marble dropped from an upstairs window.
b) A table tennis ball dropped from an upstairs window.
©) A marble dmpped from an aircraft at 2000 metres altitude,
@) A shot being put.
) A rocket firework being sct off
0 A child on a swing.
9 A person walking.
1) A person cycling.

2 Do you think it would be reasonable to disregard friction in the following situations?
a) Skiing downhill
b) A child going down a slide.
©) Raising an object on a rope passing over a tree branch.
@) Raising an object on a rope passing over a pulley.
o) A car being driven in a straight line.
) A car being driven round a curve.

3 In the sport of bungee jumping. participants jump from a platform with an elastic rope attached to
ther ankles. The other end of the rope s attched tothe plaform. Padipants ol un e
“The tension built up in ly brings them to
atemporary stop. Often the jump takes place over water and e pariipans have the choiceof
whcl.hcr {0 come 10 stop beloe heyhi th water, whether 0 get thei i wetor whethr to
hosen by them. 10 work out the correct length of

plu
Topeto sty thei ety
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Eexencise 1
In modelling this problem the following list of factors was drawn up. Separate them into three
lists:

A Those which can be totally ignored in forming a mathematical model.

B Those which cannot be ignored but which you think would be too difficult to include in an
initial model.

C Those which should probably be included in an initial model.

In each case, while at this stage you do not have enough knowledge to answer this question
with 100% confidence, try to justify your inclusion of each item in its list.

a) The weight of the person.

b) The height of the person.

©) The height of the platform.

@) The elasticity of the bungee rope.

©) The number of ropes

) The accuracy with which the measurements can be made.
9) The weight of the bungee rope.

1) The weather conditions.

) The depth of the water.

m) The maximum stress the body can take.

) The way the bungee rope deforms when it i stretched.

0) How fst the water is flowing.

P) How fast the person wants to be moving when he/she hits the water.
@) Whether there is a cross win

) How the rope i tied to the ankles.

) Any more you can think of

For each of the following situations, make a list of the factors which you think might have a
bearing on the outcome.

a) The amount of water falling on a person crossing an open space in the rain
b) The motion of a boat crossing a river.

©) A tennis player serving.

@) A toy car free-wheeling from rest down a slope.

@) A child swinging on a rope tied to a tree branch.




2 Vectors

Lord Ronald ... flung himself upon his horse and rode madly off in all directions.
STEPHEN LEACOCK

When modelling physical systems, we use a number of quaniites, such as

force, displacement, velocity, acceleration and momentum, which share i

common property: namely. all of these quantities can be specified completely

only by stating both their magnitude (size) and their direction. Such quantitics
called veetors.

[ A vector quantity is one which has both magnitude and direction.

We also use other quantities, such as distance, speed, work and power,
which are completely specified by their magnitude. Such quantities are
called scalars.

[ A scalar quantity is one which has only magnitude.

Because of this shared vector property, the mathematical techniques used for
combining and manipulating displacements work equally well when we wish to

. We therefore need to spend some
time becoming familiar with the language and mathematics of vectors.

Notation

‘The simplest vector quantity to illust
given distance in a given
segment.

ate is a displacement, or translation, for a
can be represented by a dirccted line

‘The line segment shown in the diagram represents a translation from A to B.
“To show that it s a translation rather than just the distance AB, an arrow is
‘put over the pair of letters to give AB. This convention is the more widely
used. particularly by the examination boards. (The other way to represent a
directed Tine segment i Lo print its pair of letters in a bold face to give, in our

example, Al

An alternative way of labelling vectors is to use a single letter in bold type,
such as a. This would be handwritten as a.



PROPERTIES OF VECTORS
Magnitude

‘The magnitude of the vector AB is shown as AB or [AB].

‘The magnitude of the vector a is shown as [a] o a.

Unit vector

A vector with a magnitude of 1 unit is called a unit vector. The unit vector in
the direction of a vector a is usually labelled & (often referred 1o as ‘a hat’).

Properties of vectors
Equality of vectors

Vectors are equal if they have the same magnitude and direction. P o
For cxample, in the parallclogram shown on the right,
=DCand AB =

Addition of vectors

In the triangle on the right, we can sce that if we combine the N > c
translations AB and BC the effect would be the same as the
single translation AC. », Teq

We say that AC s the vector sum of AB and BC, and write
AB+BC = AC
AC is called the resultant of AB and BC.
(Note the use of a double arrowhead in the diagram to signify that the vector
is  resultant )
You should be clear that this does not mean that the lengths AB + BC = AC.
‘Think of the + symbol as meaning ‘followed by', s0 AB + BC = AC means
translation AB followed by translation BC is cquivalent
to translation AC

The .nmrmmn for using the + symbol will be clear when we consider vectors
in component

Zero vector
If we were to combine the displacements AB and BA, the resultant would be a

vector with zero magnitude (its direction would be undefined). We call this the
zero veetor and write it as 0 (handwritten 0).
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Negative vectors
As AB + BA = 0, itis reasonable to write BA = ~AB.
The translations AB and BA are the exact opposites of each other.

In general, the vector -a has the same magnitude as a but the opposite
direction.

Multiplying by a scalar

If the translation a s applied twice, the effect i a translation twice
as far in the same direction:
ata

a
4
[2a] = 2[a]

In general, ka is a vector parallel to 8 and with magnitude k

[kal = Kla]

‘Commutativity

Translation p followed by translation q has the same resultant as g followed by
p. In the diagram

p+a=AB+BC =AC
a+p=AD+DC=AC
= pra=q+p

That is, vector addition is commutative.

Assoclativity

1f we add several vectors, the order in which we bracket them does not affect
the resultant. In the diagram:

(p+q) +1=AC+CD=AD
+(@+r)=AB+BD =AD
= (@) +r=p+@+r)

That is, vector addition is associative,
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Subtraction

Subtracting the vector B i cquivalent to adding —BC, or CB. In the
diagram, p = AB and g = AD, so:

p-q=AB-AD

Example 1 In the diagram, ABEF and BCDE are squares. Vector
AB = pand vector AE = q. Find a) AC b)AD ¢) AF d) EC

soumon
9 AC=2AB = AC=2p ? °
b) AD = AE + ED = ¢ + ED
But ED =AB
= A ©
= RD=q+p v

Note Any route from A to D gives the required result, For example,
we could have said

AD = AB + BD
As BD = AE = q, this gives
AD=p+q
) AF = AE + BF
Bu EF =BA=

Example 2 The diagram shows a cuboid ABCDEFGH, i A
vith AB, BC and TG corresponding to the vectors p. q

and r, as shown. M is the mid-point of GH. Find, in
terms of p, q and r, the following vectors:

aAC  b)DF o BM 7
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sownon
8) AC=AB+BC=p+q
b) DF=DC+ CB+BF =p-q+r1

o BM = BC + G + OM =q+r—p

Example 3 ABCD is a E is the mid-point of AC. c
Vector AB = p and vector AD = q. Find a) BE  b) BD. .

What can be deduced from the result? 5

soumon N /

a) First notice that

RC-RB+BC=p+q

and
AE={AC=1(p+9
Therefore,
BE = BA + AE
=-p+i(+q
=i@-»

b BB =BC+CB=q-p
‘We can see from this that BE = £ BD. This means that BE is half the
length of BD and BED is a straight line. That s, E is the mid-point of
BD. This proves that the diagonals of a parallelogram bisect each
other. (Many standard geometrical theorems can be proved by vector
‘methods in this way.)

Example 4 An cxpedition in the Sahara travels
10km on a bearing of 080° and then 8km on a
bearing of 045", What is the expedition’s final
position in relation to its starting point?

soumon
The resultant of the two s of the journey i
the vector AC in the diag:

In mnngle ABC, we have AB = 10km,
and ABC =




PROPERTIES OF VECTORS

By the cosine rule:
AC? = AB? + BC? — 2 x AB x BC x cos ABC

02 482 — 2 x 10 x § x cos 145°

95.08

= AC=I17.18km

By the sine rule:

BC
sinBAC

4

= BAC=155

So, ACisa dlsplaumenl of 17.18 km on a bearing of
30° — 015.5° = 064.5°.

Exemple 5 A suimmner, uho cun i 03 $ms in still water, wishes to

cross a river flowing at 0.5m s "

) If she aims straight across the river, what will be her actual velocity?

b) If she wishes to travel straight across, in what dircction should she aim
and what will be her actual speed?

soumon
‘We need to make the simplifying assumption that the water flows at a
uniform speed at all points on the crossing. We can then represent the
velocities by the vector diagrams on the righ.

Swimer
# Theswimmer's actual spesd i 30 ¥ = VOFTFOF =0943ms”! okt .
Her direction 0 is given by

0= 5§

08

tano =28

05

So the swimmer travels at 0.943m ! at an angle of 58" 10 the biv03met
dircction of the river.

) The direction of the swimmer’s aim i given by Swiner .

cosh = 5 p=513

s
08
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Her actual speed is u = VO — 0,51 =

So, she should aim upstream at 51.3° to the bank. She will then travel
straight across the river at 0.625ms™".

.625ms™!

Exercise 2A

1 ABCE i a rectangle. CDEF is a rhombus. G s the mid-point 5
of AB. AF = pand EB = q.
a) Find in terms of p and q:

DAB W) CB ) DB

&) Show that BB + CA = 2DF. 4 T "

2 Thc diagram shows a regular hexagon ABCDEF with AB =
BC = q. Find in terms of p and q: Y

@AB  ®AC oCE @BE oFA R o

3 The diagram shows a trapezium ABCD with AB parallel to DC
and twice as long. E is the mid-point of BC. AD = p and
BC = q. Find in terms of p and q:
o AB BHAC oCD DB «AE  0ED

-

The diagram shows a tetrahedron OABC with OA = a, OB = b
OC=c.Dis mc ‘mid-point of AB and E is on BC so that
1. Find in terms of a, b and e:

mﬁ o AD. @ BC
0 OF @ DE

5 Use vector methods to show that the line joining the mid-points of two.
sides of a triangle is paralle] to the third side and half its length.

6 The dugmm shows triangle ABC with D, E and F the mid-poiats <
of BC, Al B respecively. G is the point on AD such that the
ratio AG : GD = 2: 1. Vector AB = pand BC
a) Find in terms of p and g:
)DE mDA ) BG Iv) GE
Explain what your resuls indicate about the points B, G and E.
b) Prove the equivalent result for points C, G and F.
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ABCD is a quadrilateral. E and F are the mid-points of the diagonals AC and BD respectively.
) Show that AB + AD = 2AF and CB +CD = 2CF.
b) Hence show that AB + AD + CB + CD = 4EF.

8 ABCD is a rectangle. Show that AB + 2BC + 2CD + 7DA + 2BD = 3CA.
9 In each of the following cases, find the magnitude and direction of the resultant of the two
given vectors,
a) A displacement of magnitude 3.5km on a bearing 050° and a displacement of magnitude
m on a bearing of 128",
) A displacement of sagnitude 26k on o bearing of 175° and a displacement of 18km on a
bearing of 204°.
©) Velocities of 15kmh-! due north and 23kmh~" on a bearing of 253",
@ Forces of 355N on a bearing of 320° and 270N on a bearing of 025"

10 A boat travels from point A on a bearing of 075° for 25 km and then travels a further 18km to
point B. If the distance AB is 14 km, find the direction in which the boat travelled on the
second stage of the journcy.

1 Two ships A and B set out from port O simultaneously. The first traves due north at
16kmh™", the second due east at 13kmh~".
B} m Vector AB represents the displacement of B from A. Express this in terms of OA and

b Fmd the magnitude and direction of AB after 1) 1 hour, ) 3 hours, i) ¢ hours.
©) The ships’ radios have a range of 120km. For how long wil the ships remain in contact?
d) For how long would they remain in contact if B had traelled north-cast?

12 A boat which can travel at Sms-! n still wate i crossing a tiver 200m wide. The rate of flow
of the river is 2ms™", assumed uniform at every point in the river. Points A and B are directly
opposite each other across the river.

a) If the boat leaves A and steers towards B, at what speed will it travel and at what point will
it reach the opposite bank?

b) If the boat needs to travel towards B, in what direction should it be steered and at what
speed will it travel?

©) IF the boat needs to land at point C, 150m upstream of B, in what direction should it be
steered and how long will it take to reach the bank?

Components of a vector

Vectors need to be specified in relation to a frame of reference. In the ¢ provous
section, we used compass dircctions as our frame of reference, but m

Commonly we use < and y-axes. (W will confne ourselves & two dimensions
for the present.)
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We have already defined a unit vector as a vector with a magnitude of 1 unit.
We now define i and j as the unit vectors in the positive x-direction an

positive y-direction respectively. All other vectors can then be formed by
combining multiples of i and j

For example, in the diagram, the vector OF = OA + AP. *

But OA = 3i and AP = 2j, which give 2

OF =3i+2j
‘The 3 and the 2 are called respectively the x-component and
the y-component of OP

An alternative notation is OF = (;) which is called a column vector.
When a vector s given as a magnitude and an angle, we can convert it into
component form. This is called resolving the vector into components.

In the diagram, the vector OP has magnitude r and direction
10 the positive y-direction.

From the triangle, x = rcos § and
= OP =rcosOi+rsin0]
When we are given the vector in component form

rsing,

OF = xi+yj

its magnitude is given by

r=v

and its direction by 0, where tan 8 = 2.
X

Example 6 Express each of the vectors shown on the left in component
form.

10cos38” = 7.¢
BQ = 10sin38° = 6.157
- — = 00Q=-788i+6157
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= OR=—10.97 1023

Example 7 Find the magnitude and direction of the following vectors:

ap=2+5 bq=3-2 or=-i-2
soumon
a) |pl = V2T F 5 = 5.385

L

> 0=682

606

jL lal= \/31+( ¥ =

= 0=3T

ano=2

Irl = VT (27 =2.236

anf=2 = 0=634°

‘There are two things to note.
© In Example 7, the direction s given as an angle indicated in the diagram. More
formally, the direction would be given as & rotation 6 from the positive
edirection, with ~180° < 0 < 180° and the anticlockwise sense taken as.
‘positive. The answers would then be a) 68.2°, b) —33.7°, c) ~116.6".

« Your calculator may have functions for converting etweca rtcizngular
and polar coordinates. These may be used to convert betw
components (x,) and magnitude and direction (r, 0). This can act as 2
ut cannot be a substitute for clearly shown

any case, no help with problems couched in algebraic

rather than numerical terms.
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we know a vector in component form, ¥
‘magnitude as follows.

ai+ bj+ ck, we can find its

In triangle OAD, we have

OA? + AD?
—a+d
In triangle OPD, we have

OP? = 0D + PD?

=@+ 40 o
So, for ¢ = ai + bj+ck, we have
[ [f= V@i B+ e

If the vector makes angles of «, f and 7 with the 0 = ”
axes. then from triangle OAP we get

Similarly, we have

cosp

b
e and  cOS' —_—
VN (v
It follows that

costa+cos + cos’y



VECTORS IN THREE DIMENSIONS

Example 10 Given a = 2i - 2j+k and b = 3i + 4] + 6k, find:
a)a-b b2+ ol di

sowmon

a- ~ 65k

) 28+ 3b = (4 — 4] + 2K) + (9 + 12j + 18K)
133+ 8+ 20k

Example 11 A helium balloon is released from O. It rises at a constant
2msF and is blown by a steady wind of 10m s~ coming from a bearing
of 250°, How far is it from O after 20 seconds?

Taking east as the x-direction and north as the y
y-direction, the velocity of the wind is

10¢0s 20° © *
105in20°
0

0
‘The still air velocity of the balloon is (n)

Therefore, the resultant velocity is
10c0s20° 0 10c0s20” 9.397
10sin20° | + 0 ) = { 10sin20° | = [ 3.420
0 2 2 2
After 20 seconds, the displacement vector is
9.397 187.94
20 (342 | = 6840
2 40

The distance is the magnitude of this displacement vector, which is

VIB799 + 68,407 + 40 = 203.96m
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Example 12 A vector makes angles of 66° and 53° with the positive
- and y-directions respectively. Find the angle that it makes with the
z-direction.

We know that
cos' +costf + cos’
= cos?66° +cos?53° + cos’y
= costy

— cos'66° — cos?53°
472
= cosy = £0.687

= y=466" or 1334

Exercise 2C

1 Given vectors

~j+2k b=6i~3j~2kand ¢ = i+~ 3k, find:
aha-b M2+ WP Wle-a Wb
Vi) the angles between b and the positive x-, y- and =-directions

5 vector paralle b and with magnitude 28
©) the values of p, g and r when

Ppatge=31-5j+rk

2 The di shows  vetar  with mageitude §, making anghs of 2P 85°and 64 it the
positive x-, y- and z-directions respectively. Express r in component form ai + 5] +

3 A vector p has magnitude 12 and makes angles of 68° and 75° with the positive y- and =-
directions respectively. Find the two possible values for the angle which p makes with the
positive x-direction. Hence find the two possible vectors p in component form.

4 A vector di

bj-+ ck has magnitude r and makes angles a, f and 7 with the positive x-, y-
and z-directions respectively. Complete the following table. In some cases, there are two
possible solutions.




SCALAR PRODUCT

rlal B[ v[ab]e
@ | 7 | |6 [0

b | 6 [us |4 [187
ERERIERES

@ 4 6|12
o 3 4] s
0|4 R

9 ERIES 5

0 75 | 4 -

5 Eamonn Chute is a wildlife photographer. He spots a butterfly which s flying so that  seconds
after he sees i, ts displacement (in metres) from his camera is

(14 0.20i +0.05%) + 0.5/7k
Alter 6 seconds, he presses the shutter and gets a perfect picture.

) At what angles to the three axes did he point his camera?
b) At what distance did he set the focus?

Scalar product

Although vectors cannot be multiplied together in the usual sense, there are
two ways in which vectors a and b can be combined which arc reminiscent of
multiplication and which serve useful functions. These are the scalar product
(or dot product) and the vector product (or eross product). The vector product is
outside the scope of this book, but we do need to know how the scalar product
is defined.

First, we need to be clear what we mean by the angle between two vectors.

Itis the angle formed at a point where the two vectors are both directed away
from the point.

g

In the diagrams, 0 s the angle between a and b, and @ is the angle between ¢
and d
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For two vectors a and b the scalar product (dot product) is defined as

[

where @ s the angle between a and b.

Jal Iblcos0

Notice that a.b is a scalar quantity — hence the name scalar product.

‘The scalar product can be interpreted as the magnitude of the component of a
in the direction of b (namely, |a]cos 0) multiplied by the magnitude of b.

‘You will meet this interpretation when we deal with the work done by a force
(page 254).
‘We can also express the scalar product in terms of the components of the two
vectors. This can be deduced as follows.

Consider triangle OAB, with angle 6 between the vectors a and b, as shown.
Let a = ayi +axf and b = byi + huj, which give
b-a=(b —a)i+ (b~ @)
By the cosine rule:
OA?+OB? ~2 x OA x OB x cos ) = AB* 3
= [a]* + b = 2ja {b]cos = [b - af*
= @+ )+ (b7 4 b?) = 2al bl cos 0 = (by — @) + (b — a))*
= |a|[blcos® = ayb, + azby
= ab=ab +ab

1f we had been using three dimensions, a similar process would give

[ ab=aby +abs + ashy

Finding the angle between vectors

From the definition of scalar product, a.b = [a] [b]cosf, we can obtain the result

[ cos0 = 30
la [b|
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Example 13 Find the angle 0 between a = 2i+4j — kand b = i + 2j + 3k.
Using the component version of the scalar product gives
2x144x24(-1)x3=7

al
Also, we have
B S E

=04082 = 0=659°

= cosf=

7
V2 x V14

Example 14 Tnnngl: ABC has A(3,2,5), B(1,4,~2) and C(~2,0,3). Find

the angle Al
soumon
The required angle is that between vectors BA and BC, namely 6. N

From the coordinates of A, B and C, we get

BA=2-2j+7k and BC = -3i-4j+5k c
= BABC=2x(-3)+ (- x (-9 +7x5=37 w

Also, we have
- VIR =
=V TR =

3
L E—y R
VAT x50 =

= cosl=

Properties of the scalar product

o 0= [aflafcos0° =* (.8 is sometimes referred to as o®

In particular, for unit vectors: & = 1,ii=1,jj=1,kk
© When a and b are perpendicular, then a.b = [a| b]cos 90° = 0
ok =0, kj=0

In particular, i =

1 Example 15 Given points A(2, ~3.4), B4, 1,0), C(8.9, ~8) and
D(0,~2,~5), show that ABC is a straight line with BD perpendicular to
it.
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6 Two altitudes of a triangle ABC meet at H, 5
shown. Relative to some origin O the
position vectors of A, B, C and H are
a,b, ¢ and . Show that
(h-a)b-o) =
Deduce that (h — ).(b — a)

h—b)(c—2)=0 A c

and hence that the three al

des of a triangle are concurrent.

7 Two objects are moving so that their velocities at time  scconds arc given by

w=titj

1K and vy = Q-0

e+ Dj+ 3k

a) Find the angle between their directions of motion when 1
b) Find the times at which their directions of motion are pcrpcnd.cn\a. to cach other.




3 Kinematics

The spirit of the ime shall reach me specd.

Kinematics is the branch of mechanics which deals with motion. So, in this
chapter, we are concerned with the relationships between the position, the
velocity and the acceleration of bodies, and how these change with time. We
are not concerned with the causes of these changes of motion.

Terminology

Apart from time, the characteristics of motion are vector quantitcs, and
direction is as important as magnitude. However, we sometimes just refer to
their magnitude, and the terminology we use indicates this difference.
Displacement  This is a vector quantity which states the position of an object
relative to some chosen origin.

Distance This is a scalar quantity which states how far the object has.
travelled. This is not the same as its position. For example, if you throw a ball
up in the air and then catch i, the distance it travels might be 10m (Sm up
and Sm down) but at the end the ball’s displacement from its starting point is
om.

Velocity This is a vector quantity which states how fast the object is moving,
and in which directio

Speed This is a scalar quantity which just states how fast the object is
moving. It is the magnitude of the velocity vector.

Acecleration “This term is used both for the vector quantity rate of change of
velocity and for the scalar quantity rate of change of speed.

Average speed

In order to formulate a basic model for motion, we consider, for the present,
only scalar quantitics. All motion is assumed to take place along a straight
line. We also model the objects as particles, which enables us to ignore their
size.

The average speed of an object is defined as

Distance travelled

Average speed Time taken
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Units

‘The ST unit of speed is metres per second. The notation for this is ms~"
(occasionally m/s).

Speed is sometimes given in other units, such as kilometres per hour (kmh

Example 1 A train travels from Penzance to London, stopping at
Plymouth, Excter and Bristol en route. The distances (in km) and the
times of arrival at the stations are shown in the table. Find the average
speed for each section of the journey and the average speed for the whole
journey. Tgnore the time spent stopped in the stations.

Station Distance Time
travelled (km)
Penzance 0 0600
Plymouth 121 0706
Exeter 195 0736
Bristol 321 0839
London 521 0954
soumon

Penzance-Plymouth:  Distance = 121 km, time = 66 min = 1.1 h.
‘Therefore, we have

Average speed ‘lﬂv 1N0kmh~!
Plymouth-Exeter: Distance = 74km, time = 30 min = 0.5h. Therefore,
we have

Average specd = 7 = 148k !

Exeter-Bristol:  Distance = 126km, time = 63min =
we have

.05h. Therefore,

126

Average speed =0 = 120km ™!

Bristol-London: Distance = 200km, time = 75min = 1.25 h. Thercfore,
we have

Average speed = 22 2 =160kmh”~!

Plymouth-London: Distance = 521 km, time = 234min = 3.9h.
Thercfore, we have

Average speed % = 133.6kmh™"



AVERAGE ACCELERATION

Note The average speed of a journey of several stages cannot be found by
caleulating the mean of the speeds for the individual stages. It must be found
from the total distance travelled and the total time taken.

Average acceleration
Following the ideas above, we define the average acecleration of an object by

. Change in speed
Average acceleration =
& Time taken to change
Units.
The SI unit of acceleration is metres per second per second or metres per
).

second”. The notation for this is ms~2 (occasionally m/

Example 2 A car increases its speed from 10ms~" o 25ms~", taking
5 seconds to do so. Find its average acceleration.

Average acceleration = —Change in speed

H Time taken to change
E - 25-10 =
Exercise 3A

1 In a charity walk, a group walked for 2 hours, covering a distance of 6 k. They then stopped
for lunch, which took another hour, and afterwards walked the final leg of 12km in 3 hours.
Find their average speed over the whole journey.

2 A canoe race takes place on a river. Competitors have to paddie downstream for 18km and
then return upstream to their starting point. A competitor takes 2 hours to complete the
downstream leg and returns at 8 km per hour.

a) Find the average speed for the downstream leg.
b) Find the time taken for the upstream leg.
©) Find the average speed for the whole race.

3 In the 1988 Olympic G i i '

100m 1054 800m  Imin$6.10s
200m  2134s  1500m  3min53.96s
400m  4865s  3000m  8min26.53s

Find the average speed for each of these events in ms~".
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4 A person drove a distance of 18 km from her home o the motorway before joining it for the
rest of her journey. Her average speed for the first part of the journey was 54 kmh~" and her
overall average speed was 80kmh~'. If her journey took 4 total of 72 minutes, find her average
speed for the second part of the journcy.

5 In a motor rally stage, part of the journey is through populated areas and speeds are restricted.
‘The rest is through a forest track where there are no restrictions on speed. One competitor
took 48 minutes to complete the stage at an average speed of 100km h-". The slow section of
the stage took 18 minutes and the average speed for the forest section was 125 km h~"
average speed for the slow section of the stage.

Distance and displacement, speed and velocity

In the questions in Excrcise 3A, you were not required to consider the direction in
‘which motion was taking place. The canoeist in Question 2, for example, followed
an“out and back” course, whilst the driver in Question 4 followed a route which
essentially kept going forwards. In both cases, you worked out the distance
welled, 36 km in the case of the canocist and 96 km in the case of the car driver.

e displacement of an object is its position relative o some origin (usually its
starting point). For motion in a straight line, a displacement can be in one of
twvo directions, which are defined respectively as positive and negative. Hence,
in the case of the canoeist, since the course returned to the starting point, the
final displacement was zero. In the case of the car driver, the final

displacement would have a magnitude of 96 km if the road from her starting
point were straight. This is unlikely, and without more information we could
not tell what her final displacement is. However, we often make the modelling
assumption that journeys take place in a straight line.

‘We must also distinguish between positive and negative velocites. Ifin the
example of the oo we ook the ouward e of the ac o be i he posive
direction, be pos

et OF course, the secd, being & scalar quandit, would be poiive or both egs.

Uniform speed, velocity and acceleration

When an object moves a given distance in a given time, its speed may not be
constant. In calculating its average speed, we are finding the constant speed
necessary o achieve the same distance in the same time. In reality, objects
rarcly travel at a constant speed for any length of time, but the idea is a useful

change over the period of time in which we are intercsted.

Inasimilar g, wecan make the modelling assumption that a body has
uniform accel



DISPLACEMENT-TIME GRAPHS

Displacement—time graphs

When an object travels with uniform velocity, its displacement changes by the
same amount in each equal time period. Drawing a graph of this will give a
straight line.

Example 3 A boy walks at 4kmh™" for 3 hours. Draw his displacement-
time grap!

We make a table of the displacement at intervals of 1 hour and plot a
graph of the resuls.

[ Time @) [o T v 2713
Displacement | 0 | 4 | 8 | 12 |

As expected, the graph is a straight line.

T Itis interesting to look at the gradient of
H the lin.
it
i j Using points (0, 0) and (3, 12), we have
E
22 Gradient= 220 4

o 0

Dty In calculating the gradient, we ai
dividing 12)im by 3h, 50 he unit of the
result is kmh~!.

‘The gradient is therefore 4kmh!,
which s the boy's velocity.

For any straight-line displacement-time graph,

Change of displacemen

= Velocity
Time taken to change Y

Gradient =

‘When the graph is not a straight line, the gradient of the curve at any point
gives the velocity of the object at that instant.

[ The radient of the displacement-time graph i the velosity of the object.
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Velocity—time graphs

“This graph shows the velocity of an
object (in ms~!) plotted against time

s (ins).
£
Gradient = £
H 15-0
Here, we are dividing 6ms™" by 155, so0
. the unit for this gradient is ms-2, which
LI D represents acceleration.

Hence, the acceleration of this object is
0.4ms-2. As the gradient is constant,
the object is moving with uniform
acceleration.

For any straight-line velocity-time graph,
Change of velocity
Time taken to change

When the graph is not a straight line, the gradient of the curve at any point
gives the acceleration of the object at that instant.

Gradient = = Acceleration

[ The gradient of the velocity-time graph is the acceleration of the object.

Another important property of the velocity-time graph relates to the area,
between the graph and the time axis.

If a cyclist travels at a uniform velocity of 8kmh! for 3h,
the distance travelled is 24 km. The velocity-time graph is

shown on the right. i
8
The area of the shaded rectangle is given by %
Arca =3 x8=24 LR
‘The unit for this area is h x kmh™" = km. N
This means that the area, 24 km, represents the displacement O e

of the eyelist from his starting point.

It can be shown that this result also holds true for non-uniform velocity,

‘The area between the velocity-time graph and the time axis corresponds to the
displacement of the object during its motion.



VELOCITY-TIME GRAPHS

Example 4 The graph shows the displacement

(in km) of a cyclist from a town A, plotted

against time (in hours).

) What asumplions buvbeen made n
drawing th

b) What mmncd in the different stages of
the journey!

Dispacement ()

a) Since this is a displacement-time graph,
the gradient at each point represents the
velocity of the cyclist at that time. The T3

sections of the graph are straight and so i )

we have assumed that the velocity of the

cyclist was uniform during each stage.

(This is, of course, most unlikely in

practice.)

As displacement is a vector quantity but appears on the graph merely
as ‘distance from A, we have assumed that the journey took place
along a straight line.

We have also assumed that as each stage started and finished, the
change of velocity was instantaneous.

b) Examining each section of the graph in turn, we find

AB  The journey from A 1o B took 2 hours and the displacement was
0km. The velocity of the cyclist, corresponding to the gradient
of the graph, was
10

Velocity kmh'

2

BC The gradient of this part of the graph is zero. The cyclist had
zero velocity and so must have had an hour's rest.

€D The gradient of
eyelist’s velocity, w.

section of the graph, and therefore the

20—

Velocity 33kmh!

Example 5 A car accelerates at a uniform rate of 3ms~2 for 4
seconds. It then travels at constant velocity for $ seconds before
slowing down to stop at a constant rate of 2ms~2. Draw a
velocity-time graph for the motion and from it find the total
distance travelled in the journey.



CHAPTER 3 KINEMATICS

soumon
‘The graph is shown on the right

Velocity (m)

¥
Tine )
“The stages of the journey are:

AB A straight-line graph corresponding to uniform acceleration. The
velocity after 4 seconds is 3 x 4 = 12ms!, and 50 the coordinates of
Bare (4, 12).

BC The car travels at a uniform velocity and so the gradient (the
acceleration) is zero.
CD  The car slows at a constant rate of 2ms~>. The section CD on the

graph is, therefore, a straight line with a gradient of
coordinates of D are (15, 0).

2. So, the

The displacement of the car for the whole journey is given by the area of
the trapezium ABCD. So, we have

Displacement = (5 + 15) x 12 = 120m

As the car is moving forwards throughout the journey (the velocity is
throughout), this also represents the distance that the car travels,

Example 6 A bus starts on its route from town A 10 town B, 20km away.
‘When it reaches B, it stops for 15 minutes before returning 0 A. If the
bus’s speed is assumed to be a constant 40 kmh~!, draw the displacement-—
time and velocity-time graphs for the journey and interpret the graphs.

‘We model the journey assuming the road AB is a st
the origin and the direction from A to B s positive.

ight line, with A as

Displacement-time graph  The journey from A to B

s represented by the scction PQ of the graph, The 5 X
velocity is constant and o the graph is a straight 3
line with gradient 40kmh~'. E 10-
“The section QR represents the 1S-minute rest stop
atB. o5 05
ine
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“The return journey is represented by the
section RS, This has a gradient of —40 kmh "\,

Velocity-time graph  The section PQ represents
a journey at a uniform velocity of 40kmh~".

‘The section QR represents the rest stop when the
velocity is zero.

Velociy (kmh-1)

The section RS sepresents the return journey,
when the velocity is ~40kmh-!

Interpretation The scction PQ of the
displacement-time graph has a positive gradient
of 40, corresponding to the velocity of 40kmh~".

The section RS of the displacement-time graph has a negative gradient of
—40, corresponding to the velocity of ~40km h~" as the bus moves back
towards the origin.

“The area of the velocity-time graph above the time axis (from P to Q)
represcnts the displacement AB. So, we have

40%05

Area 20km
‘The arca of the velocity-time graph below the time axis (from R t0'§)
represents the displacement BA. So, we have

40 % 0.5 = —20km

Arca =
‘The total (resultant) displacement from A is 20 + (~20) = Okm

‘The total distance travelled is [20] + 20| = 40km

1 A woman, walking a dog along a straight path, stops and releases the dog at a point A.
She then continues to walk forward at a constant speed of 1.4ms~!. The dog runs 100m
forward in 10 seconds, stops and sniffs for 10 seconds, then runs forward a further S0m
in 20 seconds. It then spot snother dog; 1001n th other side of A and runs buck to join
itatsm

) Draw a displacement—time graph for the dog and the woman.
b) From your graph, estimate where and when the dog passes the
El Fmd the average spe and the average velocity of the o for the whele time period
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2 A cyclist starts from town A to town B, 60 km away. In the first hour, he travels 20 km. He
for 15 minutes before completing the second stage to 20km at the same speed. He
then has a second 15-minute rest period before completing his final stage at the same speed as
the previous two.
) Draw a displacement-time graph representing the journey.

A sccond cyclist starts from B to cycle to A. She leaves B at the same time as the first cyclist
leaves A and travels non-stop at 16kmh~".

b) On the same axes, draw a
displacement of this cyclist from
©) At what time and where o the two eyclists pass each other?

placement-

ime graph for the second eyclist, measuring the

3 A boat starts from rest at a point A and accelerates in a straight fine at a constant rate
of 0.5ms" for 12 scconds. The propeller is then put into reverse, decelerating the boat to
rest uniformly in 15 seconds. The propeller stays in severse, making the boat accelerate
back towards A. It reaches a speed of 6ms- in 10 seconds and then continues at that
speed.

8) Draw a velocity-time graph for the boat
1) What was the furthest distance from A that the boat travelled?
€) What was the total time between the boat’s leaving A and its returning to A?

4 The displacement-time graph shows the progress of a

E B C
villager doing her weekly shopping on foot. o
) Describe the motion during each stage of the is
journey. ih 5
b) Draw the corresponding velocity-time graph. | T T S B S B
Time )

5 Chulchit drives to work along a straight road of length 8 km. His car accelerates and

decelerates at 2.5ms~2 and his preferred cruising speed is 0kmh~".

a) Assuming that he has a clear run with o hold-ups, sketch a velocity-time graph of his
journey and hence calculate his journey time.

Chulchit hears on the radio that there is to be a 36kmh-! speed limit for 2km because of road

works somewhere along his route, but there is no information as to where it will be.

b) Investigate the effect of the positioning of the road works on Chulchit's journey time and
find his maximum and minimum best-journey times while the speed limit is in effect.
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Motion with uniform acceleration

‘When designing mathematical models of motion, we often assume that the
acceleration of a body is niform (constant). This simplifies the model and
allows us to derive a useful set of equations.

Suppose that a body starts with velocity u when ¢ = 0, and accelerates at a
uniform rate a for a time ¢, when its velocity has become . Call the
displacement achicved during this mation s. Usualy, 1 i in seconds, s in
metres, uand vin ms~', and 2 in ms~, but the equations we derive will be
true for any consistent set of units.

As the body has uniform acceleration, the velocity-time graph is a straight line
(constant gradient), as shown.

‘The aceeleration i the gradient of the graph, given by

Gradient =

So, we have

H
3

Rearranging this equation, we get Time 5)

v=u+tat m

‘The displacement is the area under the graph. The shape below the graph is a
trapezium, whose area is given

m

o @

Notice that cach formula involves four of the five variables s, u, v, @ and 1.
Formula [1] has no s, whilst formula [2] has n

‘We can combine these formulae to produce three further formulae covering the
other possible sets of four variables. You should now do this for yourself in
the exercise below.
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Exercise 3C

1 Use formula [1] to eliminate » in formula [2] to give formula [3]
2 Use formula [1] to eliminate u in formula [2] to give formula [4].

3 Use formula (1] to climinate ¢ in formula [2] to give formula [3].

‘These five formulae can be used to solve problems provided that we can make
the modelling assumption that acecleration is uniform.

Note When acceleration is not uniform, these formulae are not valid and
should not be used.

When attempting to solve a problem, you should list those variables whose
values you know, together with the variable you are trying to find. This will
guide you to the correct formula to use. In practice, some of the formulae are
more frequently used than others. Rearranged in order of usefulness they are:

utar

wtiai

W+ 2as

Example 7 A car, travelling at 15ms™", accelerates at 3ms~ for §
seconds. What then is its speed?
We know u = 15ms!, a = 3ms~ and 1 = §5. We need to find ».

Substituting the known values, we get

15+3%5=30ms"

Exarapla 8 A ca, travellng st 10ms™", accelerated at 4ms > until it was
travelling at 18m.

a) How far did it travel during its acceleration?

b) How long did it take to effect this change?
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soumon
3) We know

=10ms

,v=18ms™ and a = 4ms~%. We need to find s.
The formula containing these variables s 1 = u? + 2as.

Substituting the known values, we get
18 =100+ 2x 4 x5
= s=2
So, the distance travelled during acceleration is 28 m.

b) With u, v and a as in part a, we need 10 find 1.
‘The formula containing these variables is v = u + at.
Substituting the known values, we get
18=10+4x1
= 1=2
So, the change took 2 seconds to effect.

Example & A partile puse  oiat O witha velocy of 10me-! and an
acceleration of ~4m.

a) Find the velocity of the particle afier 15, 25, 3s, 45, 55.

b) Find the displacement of the particle at the same times.

o) Draw a velocity-time graph and a displacement-time graph for the
motion during the first 5 seconds.

soumon
a) Using v =+ ar, where u = 10ms~' and @
v=10+(-4) x 1
= v=10-4

., we obtain

Substituting the values of  into the above, we have

b) Using s = ur + Lar?, we get

S=1004dx (-9 x 2
= s=10-2
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Substituting the values of ¢ into the above, we have

2 4 5
8 12 12 8 0

©) The velocity-time and displacement-time graphs, plotted from the
values in the two tables, are given below.

1 i
o
-8 %-
H
F i o
E T3 T3 .
H Tie () E
4 2
o
i~ L

L]
Tane )

‘The terms deceleration and retardation are sometimes used to describe a
negative acceleration. So, for example, the negative acceleration of ~4ms~2 in
Example 9 would be described as a deceleration or retardation of 4m s
omitting the minus sign.

Exercise 3D

1 A train leaves a station and accelerates uniformiy at a rate of 3m s for 30 seconds.
@) How far does it travel during this period?
b) How fast is it travelling at the end of the period?

2 A stone is dropped from the top of a tower. It takes § seconds to reach the ground, by which
time it is moving at SOm s

) What is its acceleration?
) How high is the tower?

3 A body starts from rest with uniform acceleration and in 10 seconds has moved a distance of 150m.
) What is its acceleration?
b) How fast is it moving at the end of this period?

4 A train leaves a station from rest with a constant acceleration of 0.2ms"2. It reaches its
‘maximum speed after 2 minutes and maintains this speed for a further 4 minutes, when it slows
down with un acceleration of —1.5m ™. How far apart are the two stations?
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5 A train accelerates uniformly from rest for 1 minute when its velocity is 30km h~". It maintains
this speed until it is S00m from the next station when it slows down to a stop. Find the
accelerations during the first and last phases of the journey.

6 A car crosses a speed hump with 1 velocity of 4ms~! I then accelerates at & rat of 2.5my
to.a specd of 9ms~! when the driver applies the brakes, causing an acceleration of ~3ms
reducing the speed of the car to 4ms™! to cross the next hump.

@) How far apart are the humps?
b) How long does the car take to travel from one hump to the next?

7 A lift ascends from rest with an acceleration of 0.5m s~ before slowing with an accclration of
~0.75ms"? for the next stop. If the total journey time is 10 seconds, what is the distance
between the two stops?

8 Two particles, P and Q. are moving along the same line in the same direction. P is 10m
behind QP sarts from rest and has an acceleration of 2ms~2. Q has a uniform velocity
of 3m.

a) How long does P take to catch Q7
b) How far has P travelled in doing so?

Free fall under gravity

A body falling through the air is subject to gravity and to air resistance. Air
resistance varies, depending on the shape, size and speed of the falling body.
and, if we choose to include it in our model, the solution of the problem is
‘complex. However, for a small body falling at a relatively slow speed, the effect
of air resistance is quite small. and 5o we often make the following modelling
assumptions:

 The body is a point mass.
o Air resistance can be ignored.

« The motion of the body is along a vertical line.
 The acceleration duc to gravity is constant.

With these ssrumpticns, e ony fooescing o the body it welght,and s
acceleration is that due (o gravity. This is denoted by g and is usually taken as
equal to 9.8m s (Smm examination boards use g = 10m s~ in some or all
of estions, and usually tell you th

instructions or in the questions. In the absence of such information, you arc
advised 1o use g = 9.8ms %)

With the above modelling assumptions, the formulae for motion with
uniform acceleration derived on page 42 are valid and can be used to solve
all free-fall problems.
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Example 10 A stonc is dropped vertically from the top of a tower, 20m
high. How long does it take to reach the ground and what i its velocity
as it hits the ground? (Take g = 10m s

soumon

Taking th orgn a th o ofthe tover, and downards 1 the poitive
direction, we have u = 0ms™, a =g = nd s =

To find the time, 1, to reach the ground, we use s = ur + }ar
0=ix10x2

which gives

> =4
= 2 or =2

In the context of the question, the negative value is inappropriate, and so
5.

T find the velocity, v, with which the stone hits the ground, we use
=1+ 2as, which gives
V=210 % 20 = 400
= v=20 or 20

n the context of the question, the negative value i inappropriate, and so
y=20ms ",

Note Having found the value of £ in the first part of Example 10, we could
have used v = u+ at 1o find the value of v in the second part.

Example 11 A ball was thrown vertically upwards from ground level

with a velocity of 28 ms-

) What was its maximum height above the ground?

b) How long did it take to return to the ground?

Taking the point from which the ball was thrown as the origin,

and upwards as the positive direction, we have u = 28ms~' and

a=-g=-98ms2

a) At the top of lhe ball's light v
maximum heigl

Oms~' and s = hm, the

To find h, we use 2 = i + 2as, which gives
0=28+2x (-98) x h
= k=40

So, the maximun height reached is 40m.
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1) When the ball returns to ground level, s = 0m.
“To find 1, the time taken (0 return to ground level, we use
ut +Lar®, which gives
0= 28144 x (-98) x 12
= 0=(8-49)

= (=0 or 57

In the context of the question, the solution ¢ = 0 represents the time at
which the ball was thrown, and the solution £ = 5.71 represents the
time at which the ball returned to ground level. So, the ball took 5.71 5
to return to ground level.

Example 12 A ball was thrown vertically npuurds from ground level with
a velocity of 20ms~'. A boy was leaning out of a
§m above the ground, Lrying (o catch i When the ball was on s way up,
he missed it but managed to catch it on its way down.
2) What was the time of flight of the ball?
b) How fast was it travelling when it was caught?
Take g = 10ms~2,
Assuming upwards i posive, and taking lhe  origin 10 be at ground level,
we have i = 20ms™! 10m
@) When the ball was caught, s = 8m.

“To find the time of flight, we use s = u -+ }ar?, which gives

8=200+1x (~10)x 1
= 0=57-200+8

= 451 or 3549 (using the quadratic equation formula)

In the context of the uestion, the solution 7 = 0451 represents the

time that the ball took to reach the window on the way up, and the
solution £ = 3.549 represents the time that the ball took to reach the
‘window on the way down.

2

So, the time of flight of the ball is 3.549 s.

) To find the velocity of the ball as it was caught, we use v
which gives

20+(~10) x 3.549 = —15.49
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In the context of the question, the negative velocity indicates that the
ball was travelling downwards, so it was travelling at a speed of
15.49ms-" when it was caught.

Note We could have used 2 = 1 + 2as 10 calculate the speed. The solutions
to this equation would have been =15 49ms~!. The positive solution would
represent the velocity on the way up and the negative solution would represent
the velocity on the way down,

Exercise 3E

1 A stone is dropped from the top of a cliff S0m high.

a) How long does it take to reach the beach below?
b) What is its velocity when it hits the beach?

2 A ball is thrown vertically upwards with a speed of 15m s,
a) What will be the greatest height reached by the ball,
b) How long does it take t0 reach maximum height?
©) How long does it take to reach ground level again?

3 A ball was thrown vertically upwards. It just touched a cable 20m above the ground.

) What was the initial speed of the ball?
) How long did the ball take to reach ground level again?
) What was the velocity of the ball when it hit the ground?

4 A stone was thrown vertically u]-wards with a speed of Sms~! from the top of a clif, 60m
high, so that it fel 1o the beach below.
) What was the greatest height reached by the stone?
b) What was the velocity of the stone when it hit the beach?
©) How long did it take for the stone to hit the beach?

5 A stone was thrown vertically upwards with a speed of 10ms~'. One second later,
stone was thrown vertically upwards from the same point and with the same speed.

a) How high were the stones when they met?
b) How long after the first stone was thrown did the stones meet?

6 A boy dropped a stone from the top of a multistorey car park. At the same time, his friend

threw a second stone vertically upwards from the ground below, with a speed of 30ms~'. The

two stones met 1.55 later. How high was the top of the car park?

7 A body falls from rest from the top of a tower. During the last second of its motion it falls 7
of the whole distance. Show that the time taken for the descent is independent of the value of
g, and find the height of the tower in terms of g.
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8 A stonc falls past a window, 2.5m high, in 0.55. Taking g = 10ms2, find the height from
which the stone fell.

@ An object s thrown vertically downwards with speed V. During the sixth second of its motion,
it travels a distance . Find ¥ in terms of £ and g.

10 An object is projected vertically upwards with a velocity of ums™, and after 7s a second object
s projected upwards from the same point and with the same velocity. Find, in terms of , £ and
g, the time which elapses between the second object's projection and the collision between the
objects.




4 Force

Don't fight forces; use them.
RICHARD BUCKMINSTER FULLER

Everyone has an intui lea of what is meant by force. When you cycle, you
are aware of the force of air resistance. When you lift an object, you are aware
of the force of gravity. When you water-ski, you are subject to the tension
force of the towline. When you kneel down for any length of time, you suffer
from the reaction force of the floor pressing on your knees.
Force is a vector quantity, because its effect is dependent on its magnitude and
its direction. Additionally, the effect of a force var :pending on the point
at which it is applied iu line of action. For example, attaching a crane hook
10 the end of a girder or o its middle gives different results on lfting. In the
first case, the force would have a rotational effect. In this chapter, we model
objects as masses concentrated at a single point, so rotational effects are not
involved. Other situations are discussed on pages 183-21
As far as the motion of an object is concerned, the important thing is the total
effect  the resultant — of the forces acting on it. In this chapter, we consider
only those situations where the resultant force is zero and so does not affect
the motion of the object.
“The SI unit of force is the newton (N). This is defined as the force needed to
ceclerate an object of mass | kg with an acceleration of 1ms~2, (This is
explored more fully on page 76.)

The force of gravity

Itis important that you gh
‘The mass of an object, measured in kilograms, depends only on the amount of
‘matter forming the object. (A kilogram was originally defined as the mass of
litre of pure water.) The mass of an object is the same wherever it is placed in
the universe.

obec i placed pearanothe abject, ey are each subjct 1o frce
nnsmg from hei graviationa ttracton forcach o

depends on thir mascs and the disance between theircentrs of mass. Yoo

{7l b aware thal an bt ot o scar the e of the Each i wabec 0 the
force of gravity acting downwards (the Earth is acted upon by an equal force
ating upwarde). This frce i the weight of the bjec, mensured in newions.
‘The weight of an object would be different if we placed the object on the
Moon, although its mass would be unchanged.
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In Newton's model of the universe, the force in newtons between two objects of
masses my and m; (in kilograms) separated by a distance d metres is given by

. Gy
&

Gis called the gravitational constant, which is 6.67 x 10~/ Nm®kg 2.

‘The mass of the Earth is 5.98 x 10 kg. For a small object of mass mkg near
the surface of the Earth, the distance d between its centre and the Earth’s
conte is the radis of th Earth, which s approximately &.37 % 106, This
gives the force acting on the object as

(6.67 x 10°'") x (5.98 x 10*)m
(637 x 1097
9.8m newtons

“This means that an object of mass #1kg near the surface of the Earth is subject to
a constant downward force - its weight - of 9.8 m N. As we will see on page 80,
the 9.8 is the aceeleration due to gravity and is represented by g:

g~98ms?
For most purposcs, we take g to be constant everywhere on the Earth's

surface. This assumes that the Earth can be thought of as a sphere which is
uniformly dense or is at least formed of concentric shells of uniform density.

Types of force

In addition to weight, there are other forces which may act on objects.
‘The four considered here arc tension, thrust, normal reaction and friction.

Tension forces

‘When a string is pulled, it will exert a tension force opposing the pull.
If we can assume that the string that i, its mass is negligible
compared with the rest of the system), the tension force will be the same
throughout the string.

‘The woman in the diagram is holding an object of mass 3kg suspended
on a light string.

‘The tension, 7, exerts an upward force on the object and an equal
downward force on the woman's hand.

‘When the object is stationary, the tension must balance the weight, so

=3
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Similarly, the woman’s hand is stationary, so she must be exerting an lll’wurd
force of 3¢ N to balance the downward pull of the tension in the string.

‘The tension in a light string passing over a pulley can still be taken as constant
throughout ts length provided the pulley is smooth. That is, any friction forces
are 5o small as to be negligible.

Example 1 Two boxes, A and B, each of mass 40kg,
are connected by a light rope. A second rope is attached
10 B and passes over a smooth pulley. The other end of
this rope is then fixed to the ground at C. What forces
act on a) box A, b) box B and c) the ground at C?

soumon
) The forces on box A are its weight, 40g N, acting
downwards, and the tension T, acting upwards.
‘The box is stationary, so
T, = 40gN
b) The forces on box B are its weight, 40g N, the

tension T) acting downwards, and the tension
T acting upwards. The box is stationary, so

Ty=Ti+40g

=80gN

smooth, so the tension is the same throughout the rope
at the ground

©) The pulley
joining box B to C. This means that the rope is pul
with a force of 80gN.

Forces in rods: thrust

In the example where the woman was supporting the 3kg mass, the string
could have been replaced by a light rod without altering the forces involved.
Rods can, therefore, also be under tension. However, unlike \Irmgn it makes
sense 10 push the end of a rod. The rod will exert an opposing push, called a
thrust. Like tension, thrust is the same throughout a light rod.

The diagram shows a bird table supported by a light, vertical rod.

The rod exerts an upward thrust force, T, on the table, which is equal to the
downward force supplied by the weight, ¥, of the table and the bird.

At the bottom of the rod, there is an equal downward thrust force exerted on
the ground by the rod. This will be countered by an equal force exerted by the
ground on the rod.
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Contact forces

‘There are two types of force which occur as a result of contact between
objects: normal reaction and friction.

Normal reaction

Consider a cup resting on a table. As it is in equilibrium, the downward force 9
of its weight, ¥, must be balanced by an upward force, R, exerted by the
table.

Similarly, if a trap door of weight ¥ is open and resting on a
support, as shown, the support must provide a force R to help

keep the trap door in equilibrium. This force is at right angles w
10 the trap door. (There will also be a force at the hinge, but

this is not a contact force as the door is fastened 1o the hinge.) ®

Forcest Soppont
hinge

In each case, the reaction force is at right angles to (normal to)
the plane of contact, and so such a force is called a normal
reaction.

Friction

When you try to drag an object along the ground and start by
pulling gently on the rope, the object will not move. The force
you are exerting is being balanced by the force of friction.
When you gradually increase the pulling force, 7, the friction
force, F, increases to match it until it reaches its maximum.

If you pull harder than this, the object will move, although
there will still be a friction force resisting its motion.

Friction always acts in a direction opposite to that in which the
object is moving or tending to move.

‘The maximum friction depends on the nature of the surfaces in contact and the
normal reaction between these surfaces. (Modelling friction is covered on
pages 164-81.) In some cases, the riction force is small enough to be ignored.
“This is said to be a smooth contact.

¢ forces also occur when an object moves through the air or through a
uid. In some situations, these forces are small enough for us to ignore them
in our model. In other situations, we must take them into account. For
example, in modelling the motion of a ball-bearing falling a short distance in
air, we could probably safely ignore air resistance, but for a sheet of paper
ing through air or a ball-bearing falling in a tank of oil, we would have to
take account of the resistance. Like contact friction, the resistance of air or a
liquid always acts to oppose the motion of the object.
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Drawing diagrams

‘When solving problems in mechanics, i is vital that you draw clear, careful
diagrams of a good size, and mark in all the forces involved odel,
together with relevant lengths and angles. This will help you to analyse the
problem and to explain clearly the steps in your solution.

Example 2 A large box of mass mkg is
being towed up a rough 30° slope using a
rope at 20° to the slope. Draw a diagram
10 show the forces acting on the box.
souwnon

The forces acting on the box are its weight,
mg, the tension, T, in the rope, the normal
reaction, R, and the friction, F, which acts
down the slope to oppose the motion.

Example 3 The same box is now allowed
1o slide down the slope controlled by the I &
rope. Draw the forces in this situation.

soumon
‘The only difference in this situation is that the

box is moving down the slope and so the ms
friction force acts up the slope to oppose it. o

Example 4 A car of mass Mkg is towing a trailer of mass mkg on a light
rigid towbar. There are resistances to motion F¢ and Fy on the car and
trailer respectively. Draw diagrams to show the forces acting on the car
and on the trailer

@) when the car exerts a driving force PN
b) when the car exerts a braking force BN.
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Not

o In case a, the towbar is in tension. In case b, it is under thrust.

© We usually show the tension/thrust forces only when we consider the car
and trailer separately. But when we consider the car and trailer as a single
system, the tension)thrust forces are internal forces, which are not shown.

. Slnclly. the upward reaction on the car consists of four reactions, one at

eel. But we usually show them as a single combined reaction unless

we are examining the forces on the wheels.

o Strictly, the forward driving force, P, is actually the friction between the
iven wheels and the ground, which acts in a forward direction to prevent
the wheels from spinning. However, for most purposes, we show this as a
generalised forward driving force.

Exercise 4A

1 Copy each of the following diagrams and mark in the forces indicated.

a The forces acting on this brick which i sliding
down a rough inclined plank.

I —— The forces on this shelf, supported symmetrically

on two brackets.

o The forces on the shelf, supported by one bracket
and an inclined wire.

“The forces on this ball, which has been thrown
vertically, at A (on the way up), at B (top of its
flight) and at C (on the way down)
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o ‘The forces on this football at A, B and C.

" ‘The forces on this ladder which is resting on
rough horizontal ground and against a
rough vertical wall.

2 A block A, of mass My, rests on a rough horizontal table. It is connected to a second block B,
of mass My, by a light string. The string passes over a smooth pulley at the edge of the table
and B hangs suspended.

) Draw a diagram to show the forces acting on each of the blocks.
b) Assuming that the system remains at rest, state the tension in the string and the friction
force acting on the block A

3 A man of mass m stands in a lift of mass M which is supported by a cable. Draw separate
diagrams to show the forces acting ) on the lift and b) on the man.

4 A uniform ladder of mass m and length 4a rests with one end on rough horizontal ground. The
ladder leans against a rough garden wall so that one quarter of its length protrudes above the
wall. Draw a diagram to show the forces acting on the ladder.

5 A glass rod rests in a smooth hemispherical bowl so that part of the rod extends beyond the
rim of the bowl. Draw a diagram to show the forces acting on the ro

& A small object of mass m is suspended by a light string, the other end of which s tied to a fixed
support A. The object moves in a horizontal circle below A (this arrangement is known as a
conical pendulum). Draw a diagram to show the forces acting on the object.

7 In this diagram, the pulleys are smooth, the strings light and inextensil

Draw a diagram to show the forces on the 6kg mass, and calculate the friction force acting on
if the system is at rest.
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8 The diagram shows a light rod AB
hinged to a vertical wall at A, and a
light string BC attached 10 the rod at B
and the wall at C. A mass of 2kg is
suspended from B. Draw a diagram to
show the forces acting at the point B.

Forces at a point: modelling by vectors

Force is a vector quantity, having both magnitude and dircction. So, vector
techniques can be used to study systems of forces acting at a single point.

Example 5 The diagram shows
four horizontal dog leads OA, OB,
OC and OD, each tied to the same
post at O. The dogs are pulling on
the leads with forces as show

Find their combined effect.

soumon

‘The four forces are equivalent to a single force, the resultant. The
magnitude and direction of the resultant can be found from a scale
drawing or by calculation.

Scale drawing

»
ST Resitntappoc 135N
Seae: I = 18

The forces are represented by the displacements PQ, QR, RS and ST in
the drawing. The resultant force is then represented by the displacement
PT. You should try drawing it to scale. By measurcment you should find
that the resultant force has a magnitude of approximately 13.5N and acts
at approximately —168° to the direction OA in the first diagram.
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Note A small scale is used here because of the limitation on space. In
practice, you should use the largest convenient scale to maximise the
accuracy of your results.

Caleulation Taking the vectors i and j to be in the directions shown in
the first diagram, we can express each of the forces in component form
and add them directly.
IfR is the resultant force, we have
= (200) + (~30c0s 45" i+ 305in45°]) + (~25 €05 30°§ — 255in 30° )
+(15c0s50°i — 155in 50° )

= -13.22 - 278

The magnitude of R is then B2y
IR| = V13227 £ 278 = 135IN -

and its direction is given by 0, where ®

= 0=1186

Forces in equilibrium

‘When a system of forces acting at a single point has a resultant of zero, the
forces are said to be in equilibrium, The system of forces in Example 5 would
be in equilibrium if we added a fifth force with magnitude 13.51 N acting at
1186 to OA. This additional force is sometimes referred to as the equilibrant
for the system.

When a sysem of forcss i in quifibium, the polygon produced when
‘making a scale drawing is closed, because the total effect o

isplacements would be to retur o the staring pornt This i et to a3
the polygon of forces. Although it i rare to use scale drawing to solve a
problem, knowing that the forces can be represented by a closed polygon
can be useful, especially in cases involving three forces acting at a point,
when we have a triangle of forces.

Consider an object of mass 12kg
suspended by two light, inextensible
strings AB and BC. The task is to
calculate the tensions in the two
strings.
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Method 1: triangle of forces

‘The three forces are in equilibrium and so they can
be represented by the sides of a triangle, as shown.

Using the sine rule, we get

T T 12g
Sins2  sin6d
which gives
7, - L2gsins:
EGE
T, = 1285in63" (to the nearest 1N)
sin65°

Method 2 resolving forces

‘We express the forces in component form, taking the I- and j-directions
horizontally and vertically, as shown in the diagram at the foot of page 58,
The resultant force s zero, so we have

(=T cos27°i + T sin 27°)) + (T cos 38°1 + T sin 38°) + (~12¢
= (~T1c0s27°+ Tycos389 + (T sin27° + Tasin38° — 12g)f = 0

= —Ticos27°+Tycos38°=0 and Tisin27" + Tasin38° ~ 12g=0
We now write the above as simultaneous equations:

m

]
116N (to the nearest | N).

~0.891 7, +0.788 T,

0454 T, +0.616 T

Solving [1] and [2) gives T; =

In this method, we ofien omit the vector equation and just write down the two
‘component equations directly. We need 0 indicate where the equations come
from, so the solution would look like this:

Resolving horizontally gives  ~7 cos27° + Tycos 38° = 0
Resolving vertically gives Tysin27° + Tasin38° - 12 =0

followed by solving the simultancous equations.

Lami’s theorem

In Method 1, it is possible to write down equations equivalent to those
obtained from the sine rule without drawing the triangle.




CHAPTER 4 FoRCE

in (180° - 0),

Using the fact that the sin ¢
T 7 12g
Sns2 Sin6>  sin6s

is equivalent to
T
sin 128

and these angles are those opposite the appropriate
forces, as shown in the diagram.

This rule can be stated in general:

For any set of three concurrent forces P, 0. R in
equilibrium as shown
P _ 0 R AP
sina sinf sy

This is known as Lami's theorem.

Example 6 A block of mass 4kg P 3
lies at rest on a smooth plane which

is inclined at 25° to the horizontal. 15°
Itis kept in place by a light string "\ _,
which is angled at 15° to the plane.

Find the tension, P, in the string
and the normal reaction, R, of the
plane on the block.

soumon -
‘There are three ways to solve this problem: comeucting o triangle of
forces, applying Lami's theorem or resolving the

“Triangle of forces The forces are in equilibrium
and can therefore be represented by the sides of
a triangle, as shown.

Using the sine rule, we obtain

P__R___ 4z
Sin25 sinS0° sinl0S”

which gives




La
according to Lami

Resolving the forees Take th

mi’s theorem The angles between the forces arc as shown.
theorem, we have

FORCES AT A POINT: MODELLING BY VECTORS

Then,

perpendicular o the plane, as shown in the diagram on page 60.

Resolving in the i-direction gives

N
ag i
sin75° >
15
1552 ( Y o
e
and jdirections parallel to and
Pcos15° ~4gsin25° =0 0]
Psin15°+ R—4gcos25" =0 @

Resolving in the j-direction gives
From [1], we obtain

_ 4gsin25°

P
cos15°

=17.15N

Substituting P = 115N in [2], we have
17.155in 15° + R — 4gcos25° =0

= R=3L09N

Example 7 The diagram shows three forces in
equilibrium. Find the value of P and the size of angle 6.

‘The solution of this problem, using either a triangle of
forces or Lami’s theorem, involves the use of trigonometric
formula which you may not yet have met.

Using resolution of forces makes use of the formulae

sin0-+cos’0=1 and

sin0
300 ianp
os0

“Take the I- and j-directions as shown in the diagram.

Resolving in the i-dircction, we get

Poosf+13¢0s65°—10=0 = Pcosf=10~13cos65*  [I]

Resolving in the jdirection, we get
Psin0 ~ 13sin 65

0 = Psind=13sin6s* 6]
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Squaring [1] and (2] and adding the results, we have

P(cos’0 + sin’

= (10~ 13cos 65
= PP=159002
= P=126N

And dividing [2] by [1]. we get

+(135in 65

__13sines
Dcos6s

More than three forces

Although any set of concurrent forces in cquilibrium can be represented by the
sides of a closed polygon, when four or more forces are involved the only
practical method of solution is to resolve the forces.

Example 8 An object A of weight IV is
suspended by light strings AB and AC
attached 0 points B and C. BC is
horizontal and of length Sm. AB and
ACare 4m and 3m respectively. A
horizontal force, P, is applied to the
object 50 that the tension in AB is twice
that in AC. Find, in terms of W, the
value of P and the tension in AC.

wumon
As ABC is 2 3-4-5 triangle, BAC is 90°. It follows that cos
sinf = .

b

For the forces acting on the object
Resolving vertically gives
Tcos0+2Tsin0— W =0
= 4T+ET=W
B
Resolving horizontally gives

P+ Tsin0—
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Example 9 A smooth ring of mass 3kg is threaded on 2 light string
64cm long. The ends of the string are attached to points A and B on
the same level, where AB is 48 cm. A force, P, is applied to the ring so
that it rests vertically below B. Find the value of P and the tension in
the string.

soumon

Since the ring is smooth, the tension is the same throughout the length of
the string.

Let BC be xem, so that AC is (64 ~ x)em.

By Pythagoras” theorem:
a8

(64— 0?

= x=14

So. AC = S0cm and BC = 14cm, which give

For the forces acting on the ring

Resolving vertically gives 7+ T'sinf — 3¢ = 0

Resolving horizontally gives P~ Tcos? =0

= P=iT=205N

Exercise 4B

1 For each of the following systems of forces, find the resultant and state the force which would
have to be added to the system to maintain equilibrium.

9
PN
PN o
0
N
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2 Given that each of the following systems of forces is in equilibrium, find the unknown forces P
and 0.

b)

3 ABCD is a rectangle with AB and AD of lengths 2a and a respectively. Forces of 2N,
3N and 35N act along AB, AD and AC respectively, in the directions xmllc.ll:d by
the order of the letters. Find the force which would need to be applied at A tc
‘maintain equilibrium.

4 Each of the following systems of forces is in equilibrium. For each one, draw a triangle of
forces and from it calculate the unknown forces and angles.

, ) s
o
T v
20N P

5 Rework the problems in Question 4 using resolution of forces.

& For each of the following systems of forces in equilibrium, use Lamis theorem to calculate the
unknown forces.

a » b) o ax

¢ st s

o

7 A particle of mass 4 kg is suspended from a point A on a vertical wall by means of a light,
inextensible string of length 130cm.
a) A horizontal force, P, is applied to the particle so that it is held in equilibrium a distance
from the wall. Find the valuc of P and the tension in the string.
b) By drawing a triangle of forces, or otherwise, find the magnitude and direction of the
‘minimum femc which would hold the particle in this position, and the tension in the string
d result.
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‘The diagram shows a cylinder of mass 8k lying at rest on
two smooth planes inclined at angles of 40° and 50° to the
horizontal. Caleulate the reaction forces exerted by the
planes on the cylinder.

Two hooks A and B are fixed to a ceiling, where AB is 2.5m.

) A small object of mass 3 ke is suspended from A and B by two light inextensible strings so
that itis 2m from A and 1.3m from B. Calculate the tensions in the strings.

b) The two strings are now replaced by a single string of length 3.3m which is threaded
through a smooth ring attached to the object. A horizontal force, P, s applied to the
object so that it rests in the same position in relation to A and B. Calculate the value of P
and the tension in the string.

A string is threaded through a smooth ring of weight W and is tied to two points A and B on
the same level. The ring is pulled by a horizontal force, P, so that the two parts of the s
are inclined at angles of 60° and 30° respectively to the vertica

a) Draw the two possible configurations which fit the given facts.
b) Show that in each case the tension in the string is W(v/3 — 1).
©) Find the two possible values of P.

A light string of length a is attached to two points A and B on the same level and a distance b
apart, where b < a. A smooth ring of weight W is threaded on the string and is pulled by a
horizontal force, P, so that it rests in equilibrium vertically below B. Show that the tension
in the string is
W+t
2
and find the force P.

A particle of weight IV is attached by a light inextensible string of length a to a point A o
ertcal wal, Th particl is supportedin cquiirium by o hight igd srut of length b atached
104 point B on the wall at a distance a vertically below A. Show that the tension in the string
is 1 and find the thrust in the rod.




Examination questions

Chapters 2 to 4
Chapter 2

1 The vectors a and b are

n by:

—j+k and b=j+3k

i) Find the vector ¢ (in terms of i, j and k) such that

a-2b=btc
W) Find the unit vector in the direction of 4a —3b.  (NICCEA)

2 The vectors a and b are given by:

a=di+p(—k) and b=gqi+rj-qk

) Find the values of p. g and r for which a — 2b = 61 — 2} — 6k
1i) Taking p = 4, find the unit vector in the dircction of 8. (NICCEA)

3 The vectors a and b are defined as follows:
a=i+j+dk  b=3(-J)
1) Find the magnitudes of a, b and ¢, where ¢ is the resultant of a and b.
i) Deduce that a, b and ¢ can represent the sides of a right-angled triangle.
1il) Find the unit vector in the direction of 3a+b.  (NICCEA)
4 a) Two vectors, a and b, are given by:
a=(A+2)i+24+(@A-4k and b=Ti+j+2k
Find the values of 2 for which the magnitudes nr- and b are equal.
Y

b) 1) Find a unit vector in the direction of 3i —
i) Hence, i the force, F, of magnituce 104N, n this dirction,  (NICCEA)

5 Two forces Fy = (2i+3j) N and F; = (4 + uj) N, where 4 and i are scal.m, act on a particle.
‘The resultant of the two forces is R, where R is parallel to the vector i +2j

a) Find, to the m:lrcsA dcgre-: the acute angle between the line of action of R and the vector i.
b) Show that 2/ -

Given that the direction of r; is parallel to j,
©) find, 1o three significant figures, the magnitude of R.  (EDEXCEL)
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6 Three forces F), F and F; act on a particle and
and Fy = (pi + gj) newtons.

(=3i+7j) newtons, F» ) newtons

a) Given that this particle is in equilibrium, determine the value of p and the value of g.
‘The resultant of the forces F, and Fy is R.

b) Calculate, in N, the magnitude of R.
) Calculate, to the nearest degree, the angle between the line of action of R and the vector j.
(EDEXCEL)

Chapter 3
7 Two humps are to be installed on a road to prevent traffc reaching speeds of greater than
12ms~! between the humps. Assume that:

1) the speed of cars when they cross the humps is effectively zero
i) after crossing a hump they accelerate at 3 ms~2 until they reach a speed of 12m s
1) as soon as they reach a speed of 12ms™" they decelerate at 6ms~* until they stop.

a) A simple model ignores the lengths of the cars. Use this to find the distance between the

humps.

b) One factor that has not been taken into account is the length of the cars. Revise your
answer to part a to take this into account, giving your answer to the nearest metre. You
must state clearly any assumptions that you make.  (AEB 96)

8 A racing car emerging from a bend reaches a straight stretch of road. The start of the straight
stretch is the point O and there are two marker points, A and B, further down the road. The
distance OA = 64m and the distance OB 50 m. The car passes O at time 0s and, moving
with constant acceleration. passes A and B at times 25 and §s respectively. Find
a) the acceleration of the car
b) the speed of the car at B (EDEXCEL)

9 Two athletes, Sam and Tom, are in a race. Sam runs at a constant specd of 8.8ms™. When
Sam is 180m from the fnishing tape, Tom is 10m behind him. At this moment, Tom, who was
running at 8.5ms~", begins to accelerate at a constant rate of 0.2ms~2. When his speed reaches

9.3m s, he ceases to accelerate and continues to run with this specd.

) i) Find the time taken for Tom to accelerate from 8.5m s 10.9.3ms™!
1i) Find the distance Tom runs during this time.
b) Determine
) which athlete wins the race
1) how far ahead of the other athlete the winning athlete is when he passes the finishing
1

pe.
©) In this question the athletes have been modelled as particles. Comment on this assumption
with reference to your answers 10 part b, (NEAB)

10 Two stunt drivers drive their cars along a straight horizontal road. The first car is travelling at
30ms™" and is followed by the second car, 22m directly behind, travelling at the same speed.
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Attime £ = 0 seconds, the driver of the first car applies the brakes and uu car decelerates at
4ms~2. Two seconds later, the second car brakes and decelerates at Sm

1) Find the time when the cars collide.
W) Find the speeds of the cars at the moment of impact.  (NICCEA)

11 Two sprinters compete in a 100m race, crossing the finishing line together after 12 scconds.
‘The two models, A and B, as described below, are models for the motions of the two sprinters.
Model A The sprinter accelerates from rest at a constant rate for 4 seconds and then travels a

a constant speed for the rest of the race.
Model B The sprinter accelerates from rest at a constant rate until reaching a speed of 9ms~"
d then travels at this speed for the rest of the race.
a) For model A, find the maximum speed and the initial acceleration of the sprinter.
b) For model B, find the time taken to reach the maximum speed and the initial acceleration

sprinter.
©) Sketch a distance-time graph for each of the two sprinters on the same set of axes. Describe
how the distance between the two spriters varies through the race.  (AEB 95)

2 A train passes a signal box B P
with speed 8ms-
later its speed is vms
displacement from B is x metres

+) graph shown on the right,

comising of three fine segments,

models he ' ourneyfrom

the time it passes B until it co

o restat th next station S

#) Find the acceleration of the
train when 1 =

i) Given that the average speed © T E
forthejoumey from B 10 S
13.4ms~, fin

) Sketch the (z, x) gr.\ph for the
first 405 after the train passes B (OCR)

3

A car and a van are at rest on a straight, horizontal road with the van 25m in {mm of the
At time ¢ = 0 seconds, the van moves off with an acceleration of 1.5m s, At ti

car moves off in the same direction with an accleration of 2ms”

i) Sketchon
) After how many seconds does the car catch up with the van?  (NICCEA)

14 A motorcyclist drives at a steady speed of 30m s along a straight road in a built-up area,
thus breaking the speed limit. A policeman sits in a police car on the road and notes the
motorcycle’s speed as it passes. The policeman takes 55 to get ready and then sets off in
pursuit of the moluv\-ys,le. which maintains its constant speed. The police car acceleates from
rest with uniform acceleration 3m 5% until it reaches a maximum speed of 45m s, after which
it continues at this steady speed.
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a) Draw on the same diagram speed-time graphs 10 illustrate the movements of the motorcycle
and the police car.

T seconds after the motoreycle passes the police car, the police car has reached its maximum

speed, but has not yet overtaken the motorcycle.

b) Find an cxpression for the distance travelled by the police car in terms of 7.
©) Hence, or otherwise, find
pol i (EDEXCI

)

A lift travels from rest from the ground floor and comes to rest again at a car park 15 metres
above the ground floor. The motion of the lft takes place in three stages. In the frst stage the
lift moves with a constant acceleration; it then moves with a constant velocity of 4ms~'; and
finally it moves with a constant retardation unil it comes to rest. The times for the three stages
of the motion are 14, 1 and 1 scconds, respectively.

) Sketch a velocity-time graph to show the motion of the lift.
b) Hence, or otherwise, calculate the time for which the lift is in motion.
©) Calculate the average velocity of the lift during the motion.  (NEAB)

A ball s dropped from the top of a high building
and is observed as it passes the various floors of
the building. The distance between consecutive
oo of the building is 4 metres and the velocity of
the ball as it passes the fifth floor is ums

) The ball is observed to take  second to fall
between the fifth and fourth floors. Taking the
value of g to be 10ms~2, shuw that 4d = 2u

b) 1) The ball takes a further 3 second to fall

‘between the fourth and third floors.
Find another equation in d and u.
1) Hence show that d = 3 and u = 34
significant figures,
1) the speed of the ball as it passes the second floor
ii) the time for the ball to fall between the third and
loors. (NEAB)

oo
oo

A girl wishes to estimate the depth dm of a mine shaft. She drops a stone down the shaft and
finds that there is an interval of 6 seconds between the instant she dropped the stone and the
instant she heard the stone hit the bottom of the shaft.

) She decides to make a first estimate by assuming that the stone took 6 seconds to drop from
the 10p 1o the bottom of the shaft. Calculate her first estimate for d.
) She then used her first estimate for d, together with the fact that the speed of sound is
332ms™" to estimate the actual time taken by the stone to drop. She then used this time to
ind a second estimate for d. Calculate her second estimate for d.
c) Obiain, but do not atiempt 0 olve, th equation satisied by d when th time taken hy
sound o travel from the bottom to the top of the shaft is taken into account.
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18

iy

Hseconds)

The diagram shows an approximate (1, ) sraph for the motion of  parachutist flling
vertically; vms whwards velocity at time ¢ seconds afier he jumps out
of the plane. Use the information in the diagram

) 10 give a brief description of the parachutist's motion throughout the descent

) 10 caleulate the height from which the jump was made.

The mass of the pmclmus: is 90 kg. Caleulate the upwards force acting on the parachutist, due
10 the parachute, when

Stae o ey i which you srould expect n scnrae (1, 1) graph for xhc parachutist's motion
10 differ from the approximate graph shown in the diagram.

Chapter 4

19 A smooth plane is inclined at an angle 10° to the
horizontal. A particle P of mass 2kg is held in L
equilibrium on the plane by a horizontal force of
magnitude F newtons, as shown in the figure on the right.

Find, t0 three significant figures,

) the normal reaction exerted by the plane on P
b) thevalue of . (EDEXCEL)

0 A block of mass 20kg is held in equilibrium on a plane by means of
a string which is at an angle of 25° (o the greatest slope of the planc.
‘The plane is 40° 10 the horizontal, as shown in the figure on the right.

‘The situation is first modelled by assuming that the plane is smooth.

i) Draw a diagram showing the forces acting on the block.
1) Show that the tension in the string is about 139N and find the
normal reaction of the plane on the block.
n experiment shows that when the tension in the string is
increased to 172N, the block is still in equilibrium. The
model is now refined to take account of friction.
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ili) Draw a diagram showing the forces acting on the block and calculate the frictional force.
Iv) Without further calculations, state with a reason whether the normal reaction of the plane
on the block is the same in parts il and il (MEI)

A camping lamp P, of mass 1.2kg, is supported by
two light wires fixed inside  tent. The camping lamp
hangs in equilibrium with the wires inclined to the
horizontal at angles of 20° and 25°, as shown in the
diagram. Find the tension in each wire.  (OCR)

‘The diagram on the right shows a crate C of

weight 2000 N suspended in equilibrium by two

cables AC and BC autached to two fixed points

Aand B on the same horizontal level. The cables

AC and BC are inclined at 30° and 45° 0 the horizontal
respectively. Modelling the crate as a particle and the cables
as light inextensible strings, find the tension in the cable BC.

State what modelling assumptions the adjective ‘light’ allows you
to make about the tensions in the cables.  (WJEC)

Two light, inextensible strings are attached to a small case of mass 12kg at B. One string is

fixed to a point A. The other string passes over a small smooth pulley at C and is held at D.

The points A and C are at the same height and AB and BC are at 45° and 30°, respectively, to

the horizontal. The string section CD is at 0 o the horizontal, as shown in the figure above.
e system i in equilibrium.

i) Draw a diagram showing all of the forces acting on the mass at B.
W) By considering a triangle representing the forces acting at B, or by considering the
equations for the equilibrium of the mass at B in two directions, calculate the tensions in
the string scctions AB and BC.
l) The position of D is moved so that § increases but B remains in the same position.
‘What effect does this have on the tension in the string section
The end D of the string section CD is now pulled so that the mass at B rises. It is then held in
equilibrium.
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Iv) Describe what effect this has on the tensions in the string scctions AB and BC. [Note that
you are not required to do any further calculations.) Explain bricfly why the system cannot
be in equilibrium with B on the same level as A and C.

24 Two horizontal wires are attached 10 a point P of a 1on
rtical post, and forces of magnitude N and 10N
are applied along these wires as shown in the
diagram. The forces are inclined at 30° (o each other.
Find the magnitude of the resultant of these forces,
and find the angle which the resultant makes
with the 8N force. R

B

25 Two forces, acting in a vertical plane, have a o
horizontal resultant of magnitude R newtons.
One of the forces has magnitude 6 N and acts
atan angle of f above the horizontal. The other a
force has magnitude 4N and acts at an angle 0
of 30° below the horizontal, as shown in the
diagram on the right

1) By resolving vertically, or otherwise, N
find the value of 0.
W) Caleulate the value of R, (OCR)
%
Dirsionof
* T otk

‘Two cart-horses, A and B, pull a small heavy rock R in a straight line over rough horizontal
‘ground by means of two ropes attached to the rock. The horses are separated from each other
so that each rope makes a small angle with the direction of motion of the rock. as shown in the
figure above.
‘Throughout the motion, the rope attached to A has a teasion of 800N and makes an angle of 10°
with the direction of motion of R, and the rope attached to B has a tension of S00 N and makes an
angle of @® with ion of motion of R. The rock is modelled as a partice. the ropes
ssumed to be horontal and ai esistance s asumed 0 be neglgible Using the model

) find, to the nearest whole number, the value of
Given that the horses drag the rock very slowly along the ground at a constant speed,
b) find, to three significant figures, the resistance to motion experienced by the rock
©) Suggest one reason why it is reasonable to ignore air resistance in the situation described.
d) Suggest one refinement of the model, in relation to the ropes, which should be incorporated
1o make the model a more accurate reflection of the situation.  (EDEXCEL)
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A particle is in equilibrium under the action of
three coplanar forces. Two of the forces are
represented in the figure on the right.

#) Find the magnitude of the third force.
) Find the angle between the third force and 0N
the force of magnitude 450N, (NICCEA)

Coplanar forces of magnitudes 1N, 2N, 3N 2N

act on a particle, as shown in the diagram on

the right; the angle between the directions of

each pair of the forces is 120° Show by

calculation that the magnitude of the resultant

of the three forces is /3N, and find the angle oy i~
between the direction of the resultant and the
direction of the 1N force. (OCR)

3N
‘The diagram on the right shows four coplanar 10N
rees of magnitudes FN, GN, 20N and 100N
acting ata point O in the directions shown.
Given that the forces are in equilibrium, find
and G, (WIEC) IN oN
N

Four horizontal wires are attached 10 the top
of a telegraph pole. The tensions in the wires
are as shown on the right.

) Find the magnitude of the resultant of
these tensions.

Find the angle which
with OA.  (NICCEA)

s resultant makes

An object. of mass 40 kg, is supported in equilibrium by four cables. The forces, in newtons,
exerted by three of the cables, Fy, F and F, are given in terms of the unit vectors I, and k as
Fy = 80i + 20 + 100Kk, F; = 60i — 40 + 80k and Fy = ~50i — 100j + 80k. The unit vectors i and
jare perpendicular and horizontal and the unit vector k is vertically upwards.
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8) Find Fi, the force exerted by the fourth cable, in terms of i, j and k. Also find its magnitude
to the nearest newton.
b) Find the angle between Fy and Fi.  (AEB9%)
32 Xavier
N

Yoomse

N

b

Restofteanm A

200 Restofiean B

Teama Hortsota force dingrars Team

In a tug-of-war competition, two teams A and B are pulling a rope and are in equilibrium. The
situation is modelled by assuming that the rope has negligible mass and all the forces acting on
itare in the same horizontal plane. The horizontal unit vectors i and j are in the direction of
the rope and perpendicular to it as shown in the figure above. When the answers to the
following questions are vectors they should be given in terms of § and j.

‘The tension in the section of the rope between the teams is 3000N.
1) Write down the force being exerted on the rope by the whole team of B.
Xavier in team B is pulling with a force of 400 N at an angle of 20° to the i direction, as shown
in the figure.
i) Calculate the combined force on the rope which the rest of team B is exerting.
Yvonne in team A is pulling with a force (~240i + 100j)N.
i) Calculate the magnitude and direction of the force with which Yvonne is pulling.
Zoc is also in team A. She and Yvonne are pulling on the same point of the rope, as shown in
the figure, with a combined force of 750N in the direction —241 - 7j.
Iv) Calculate the foree with which Zoe is pulling.
) State whether the following assumptions are required for the model used, giving brief
reasons for your answers.
) The rope has negligible mass.
b) The rope is inextensible.  (MED)
3 The rhombus ABCD has BAD = 50°. Forces of 5
magnitude SN, 3N, 6N and 2N act along the
edges AB, BC, CD and AD respectively of this ™
rhombus. as shown in the figure on the right.

[} Fmd lhc ‘magnitude of the resultant of these A c

) Wuh ihe aid ofa diagram, find the angle
which the resultant force makes with the edge
AD of the rhombus.  (NICCEA)




5 Newton’s laws of motion

Nature, and Nature’s laws lay hid in night:
God suid, “Let Newton be!" and all was light
ALEXANDER FOPE

In Chapter 3 we considered the motion of objects, and in Chapter 4 the ways
in which forces combine. The most basic consideration in mechanics is the
‘connection between these. That is, what forces are involved in the motion of a
body and what cffect will a given set of forces have on that motion.

Untilthe 17th centry, the accepted model for the motion of objects had not
Essentially,
Aristotle bell:vud that for an object to be in motion there must at all times be a
force causing that motion. In other words, that force s linked to velocity. For
example, hens Id say that th
its flight. (This is &
¥

notion to this d; Star Trel
time, which

Newton's contribution was o formalise the idea developing in his time that force
waslinked 1ot o velocity but o hange of velocity: thl .t acclration. He
model and showed
tha the results were a good match wihabenel reality. All the ideas developed
in the present book are based on the Newtonian model. Although they are called
Newton's laws, you should be aware that they are just a mathematical model,
albeit a rather good one, of the observable world.

‘We should mention that an alternative model ~ the theory of relativity — was
developed by Einstein in the carly 1900s. The predictions from the two models
only differ significantly at the atomic and astronomical levels, where Einstein's
model is superior. So, for most purposes, Newton's model continues to be the
basis for analysing the motion of systems.

Newton’s first law

Every object remains at rest or moves with constant velocity unless an external
force is appl

This i really talking about an imbalance of roroes ll‘you start to pull a
u.momry trolley and someane else pulls in the e direction with an
al force, the trolley will stay at rest. If you are pull 2 the trolley along and
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the force you are exerting is exactly the same as the friction forces on the
trolley, it will move at a constant velocity. It will only specd up, slow down or
change direction if all the forces acting on it combine to give a resultant force.

‘The next thing needed is to establish the relationship between the magnitude of
the force and the aceeleration produced. This problem s addresse

Newton's second law. Newton couched this in terms of momentum, but for
our purposes we can state it as follows.

Newton’s second law

When an object undergoes acceleration, the force needed to produce it i in the
direction of the acceleration, and is proportional both to the acceleration and to
the mass of the object.

‘This accords well with common sense in that

o for a given object a larger acceleration will require a larger force and
o the more massive the object, the greater the force needed to achieve a given
acceleration

Symbolically, Newton's second law is expressed as

Focma or kma where k is a constant
Notice that this is a relation between vectors because the force and the
acceleration have the same direction.

The SI unit of force is the newton, which is defined as the force needed to
accelerate a 1 kg mass at 1ms~2. With this definition, the value of k in the
above cquation is 1, and Newton's sccond law becomes

[ F=ma

‘This equation is called the equation of motion of the body.

Note It cannot be too strongly emphasised that here F is the resultant of the
forces acting on the body.

Example 1 The engine of a car of mass 900 kg produces a driving force of

2000N. There are resistive forces of 650 N. Find the acceleration of the

car on a level road.

Acceleration takes place in a horizontal direction, so the only forces to

consider are those acting horizontally. Resolving horizontally, we get
Resultant force = 2000 — 650 = 1350N
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‘The equation of motion is F = na, giving
1350 = 900a
= .Sms~  horizontally

Note Strictly, the equation of motion in Example | is a vector equation and
would formally be written as

1350i =
-

=15ims

However, when motion i in a straight line, it is common practice to write the
equation in scalar form, as shown,

Example 2 A horizontal force of SON is applied to a sledge of mass 20kg
resting on level snow. The sledge accelerates at 2.2ms%. Find the friction
force acting on the sledge.

sownon
Let the friction force be F.

Reslving horizontally ivesthe 9
resultant force as 50 — £ N. So,
applying Newton's second law gives

50-F=20x22

= F=6N

Note that there are other forces acting: namely, the weight of the sledge and
the normal reaction of the surface. But as there is no vertical acceleration,
these forces have a resultant vertical force of zero and so have been ignored.

Example 3 An object of mass 10kg is acted on by forces 3i + 6}, 2i ~ 3}
and I+ 2 relative to some coordinate system. Find the acceleration of the
object.

sowumon
The resultant force acting on the object is
(B4 6) + (21 = 3])+ -+ 2]) = 6i-+ 5§

Let the acceleration of the object be a. Then, by Newton’s second law, we
ave

6i+55=10a
> a=06i+05
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which s the acceleration in vector component form. We can now, if
required, find the magnitude and direction of the acceleration:

laf = VOB 0,57 = 0781 ms™

If 6 is the angle with the i-direction, then we have

wno=23 o =z
06

driving foree of 120N while travelling at a

Example 4 A cyclist exerts a
mbined mass of cyclist and machine is 80 kg.

constant 4ms~". The com!

) Find the resistance force acting.
b) If the cyclist increases the di force to 140N, find the distance
travelled in the next 3 scconds, stating any assumptions made.

soumon
) For a constant velocity, the resultant forward force is zero. Thercfore,
we have

Resistance force = 120N

b) Assuming that the resistance force remains constant, and applying
Newton's second law, we ol

140 - 120 = 802 where a'is the acceleration
= a=025ms?

Using s = ut + ar’, where s is the distance travelied, «
1=3sand a=0.25ms", we obtain

s=4x3+4x025%9=13.125m

Exercise 5A

1 A body of mass 40kg is acted upon by  resultant force of 90 N. Find the acceleration of the
body.

2 Find the force needed to accelerate a body of mass 25kg at 2.1 m s>,

3 A body is acted upon by a resultant force of 24 N and undergoes acceleration of 3.6m %,
What is the mass of the body?
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4 The following table shows information about a vehicle moving on a level road. Find the
‘missing quantities.

Driving force | Resistance force | Mass Acceleration
™ ™~ (kg) (ms%)
a) 1200 800 500
b) 2000 600 3.5
<) 900 650 08
d) 250 800 13
e) 500 800 750

5 A car of mass 700kg is acted upon by a driving force of 2200 N and a constant resistance of
800N. The car starts from rest and travels along a horizontal road. After 6 seconds, the driver
depresses the clutch and the car coasts to rest.

) What was the greatest speed achieved by the car?
b) How far did the car travel altogether?

& Find, in vector component form, the acceleration of a body of mass 4 kg acted upon by forees
Si+j, 20+ Tjand —4i - 3],

7 A body of mass 2kg is acted on by forces 2i +4j, 3i ~ 5j and an unknown force P. Find the
force P when the acceleration of the body is 2

8 Findthe magaitude o th esultan foree eeded to v an obect of mess Sk aeeleation
of 2§~ 3pm

9 A horse is towing & truck along rails. The horse is attached to the truck by means of a rope of
negligible mass which is horizontal and makes an angle of 20° with the direction of the rails.
The truck has a mass of 1200kg and its motion is opposed by a resistance force of 300N. Find
the tension in the rope if the acceleration of the truck is 0.3ms™2.

Find the magnitude and direction of the acceleration of each of the objects illustrated.
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11 Rory, Aurora and Raoul are three lions fighting over a picce of meat of mass 12kg. Each lion
exerts a horizontal pull. Rory pulls with a force of 800 N. Aurora, who is 120° to Rory's right,
exerts a force of 400 N. Raoul is 140° to Rory’s left. The meat accelerates in Rory’s direction.

) Find the force which Raoul is exerting
b) Find the magnitude of the acceleration.

12 A boat of mass 3 tonnes is steered due east with its engines exerting a driving force of 4000N.
A wind blowing from the south exerts a force of 1200N. There is a resistance of 2000N
‘opposing motion. Find the magnitude and direction of the boat’s acceleration.

-5

Weight

‘We can now see the reason for the relation between mass and weight
introduced on page 51. An object allowed to fall freely (ideally in a vacuum)
near the Earth's surface is observed 10 accelerate at about 9.8 ms . The value
varies slightly depending on where on the Earth the experiment s conducted. It
is called the acceleration due to gravity and is denoted by g.

Because the object is accelerating, there must be a downward force, I, acting
. If the mass of the object is kg, by Newton's second law we have

W=mg

The force W is called the weight of the object, It must be stressed that the mass
of an objet does not vary but its weight depends on the gravitational
acceleration it experiences.

For example, an object of mass 10 kg has a weight of 10 x 9.8 = 98 N near the
Earh's surfce. F he bjet wer aken o the Mo, s mass would sl be
10kg b, as graviaonalscclrution o the Moon s about 165,
weight would be 10 x 1.6

Example 5 A crane lifs a 120kg object on the ead or its cable of

negligible mass. Al first, the object accelerates a

ata um!arm speed and finally it slows 10 rest i acelerugon of
2ms2. Find the tension in the cable at each stage of its motion.

souumon U
The weight of the object is 120 x 9.8 = 176N

Stage 1 Resolving upwards (taking upwards as the positive
direction) and using Newton's second law, we get

T-176=120x2 = T=I1416N

(N
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Stage 2 There is no acccleration and thus no resultant force. The tension
and the weight must be equal. Therefore, T = 1176N.

Stage 3 Resolving upwards and using Newton'’s second law, we get

T-176=120x-12 = T=102N

Newton’s third law

[ For every action there is an equal and opposite reaction.

‘This formally states an idea that you met on page 53: namely, that if an object
A exerts a force on a second object B (cither by direct contact or at a distance
by magnetic attraction, gravitation eic), then B will exert a force of the same
‘magnitude and opposite direction on A.

‘The effect of this is that, if both A and B are part of the system under
consideration, the force of A on B and the force of B on A cancel out. They
are forces internal to the system and do not affect the acceleration of the
system. They only become important when we examine the acceleration of
object A (or B) alone.

Example 6 A man of mass 90kg is standing in a lft of mass 300 kg which
is accelerating upwards at 0.6ms 2. Find the tension in the lift cable and
the reaction between the man and the floor of the lift.

T
soumon

When finding the tension in the cable, the forces between the man and the
lift are internal and need not be considered. The system is just the mass of o
390kg being raised by the cable.

Rcsol\-mg upwards (taking upwards as the positive dircction) and using i‘
= ma, we obtain

T-390g =390 x 0.6 l
900N
= T=4056N
When finding the reaction between the floor
and the man, we regard the system as being the
man of mass 90kg acted on by a reaction force R.
Resolving upwards and using F = ma, we obtain

R-90g=90x06

= R=9%N s0s
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Example 7 An engine of mass 10 tonnes is pulling a truck of mass

3 tonnes. The resistance forces acting on the engine and the truck are
4000N and 1500 N respectively. The driving force of the engine is
14000 N. Find the acceleration of the system and the tension in the
coupling between the engine and the truck.

1500%

When finding the acceleration, we take the engine and truck as a complete
system. So, we need consider only the driving force and the resistances,
because the tension in the coupling is an internal force. We can also
ignore the vertical forces.
Resolving horizontally and using F = ma, we get

14000 — 4000 — 1500 = (10000 + 3000)a

= 0.654ms?

To find the tension in the coupling, we consider just the
forces acting on the truck. So, the tension becomes an
external force, as shown.

Resolving horizontally and using F = ma, we get r
T — 1500 = 3000 x 0.654
= T=346L5N —

Note that we could have just as easily considered the forces on the engine.
“This would have given

Example 8 An object of mass 8 kg is being towed by a light d 5
string up a slope incined at 20° (o the horizontal The string 1\ _

is inclined at 30° to the slope. There s a frictional resistance

of 40N. The object is accelerating up the slope at 0.8ms2. e

a) Find the tension in the string.
&) Find the normal reaction excrtcd by the slope on the object, 0
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soumon

&) Resolving in the i-direction and using F = ma, we get
Tcos30° — 40 — 8gsin20° =8 x 0.3
= T=845N

b) Resolving in the jdircction there is no acceleration. Therefore, the
resultant is zero:

R+ Tsin30° - 8gsin20° = 0

Substituting the valuc for T'in the above equation gives R = 3L4N.

Exercise 5B

1 Each of the following involves an object of mass of 20 kg moving vertically on the end of a
cable. It is assumed that the only forces acting ar the weight of the object and the tension in
the cable.

2 rmd the acceleration of the object when the tension is
250N i) 150N
L} Find he tenson n the cable when the object is
1) moving upwards at a constant speed of Sms!
W) moving downwards with a constant speed of 4m ™"
) accelerating upwards at 2m s~
iv) moving upwards and slowing uniformly from 6ms ! to 2ms~! in 6 seconds
moving downwards and slowing uniformly from 6ms~! to rest in 8 metres.

2 An object of mass 40kg is suspended by a light string from the eciling of a lift of mass 200kg.
2 The I acelorates upmards 1 2ms~. Find the tension in the Jift cable and the tension in
e string,
b) Tht String breaks if it suffers a tension of more than 700 N. Find the greatest possible
tension in the lift cable if the string remains intact.

3 An object of mass 50kg is placed on the floor of a lif. Find the reaction between the object
and the floor when the fift is
a) accelerating upwards at 1.2ms*
b) moving upwards at a constant 3.5 ms
© moving upwards but slowing nnlformly from Sms~! o 2ms
d) accelerating downwards at 2.

1in 4 seconds

4 Bathroom scales actually measure the reaction force between the scales and the person standing
on them, but the dial is calibrated to show the mass of the person assuming that the scales are
placed in a horizontal position on the surface of the Earth. This means that if the reaction is R,
the dial shows the value R 9.
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What reading will the dial show if a person of mass 80 kg stands on the scales
13 onaleve uafuo o the Moon where the acceleration doe Lo gt s Sms
b) on the horizontal floor of a lift accelerating upwards at 1.

©) on the horizontal floor of a lft accelerating downwards at okme?
d) on the horizontal floor of a lift travelling upwards at a constant 3ms
&) on a surface sloping at 25° to the horizontal

§ An object of mass 20kg hangs from a spring balance in a lift. Its apparent mass is 24 kg
‘What is the acceleration of the lift?

& Two objects of mass 3kg and 4 kg are connected by a light
inextensible string and both can be raised and lowered on the
end of a second string, as shown. Find the tensions in the two
strings when the system is

a) at rest
b) moving upwards at a constant speed of 2m ™!
) moving upwards with acceleration 3m s>,

7 An object of mass Skg is suspended by means of two
identical light strings from a rod of mass 3 kg, with the
strings making angles of 30° with the horizontal. The
rod is suspended by another light string, as shown.

a) Find the tensions in the strings if the system is
accelorating upwards at 1.5ms

b) The same type of string is used throughout, with a
breaking strain of 120 N. What is the maximum
possible upward acceleration of the system and
which string will break if this is exceeded:

8 An object of mass 12kg is pulled up a smooth slope, inclined at 45° 1o the horizontal, by a
string parallel to the slope.
a) If the tension in the string is 120N, find the acceleration of the objec
b) I the tension is then reduced so that the object has an acceleration down the slope of
2ms2, find the new tension.

An object of mass 3kg is placed in a tank of oil and allowed to sink. The resistance force
acting on the object is kv newtons, where v is its velocity in ms~' and & is a constant. It is
ed that when v = 3 the acceleration is 2ms2

@) Find the value of k.
b) Find the acceleration when
©) Find the maximum speed eved by the object.
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0 Anobiex ormm 700kg is bung raised by means of a cable whose bleakmg strain is 240N,
Find the short the object can be raised a distance of 39.2m,
nmsmn., at est. [You may find a velocicy-time graph hlpful

11 A car of mass 800 kg is towing a caravan of mass 300 kg along a horizontal road. The
resistance forces (assumed constant) on the car and the caravan are 700N and 1200N
respectively

) The car exerts a driving force of 3000 N. Find the acceleration of the system and the tension
in the coupl

b) Find the force in the coupling when the system is travelling at  constant speed of S0km h-!

) Find the force in the coupling when the car exerts a braking force of 2000 N.

12 Two identical blocks A and B, each of mass i, are
connected together by a light string, S, and are
placed on a smooth plane inclined at 30° to the
horizontal, as shown. A second string, S, is attached
10 block A and is used to tow the blocks up the slope,
with S, inclined at 30° to the slope.

) Show that if lock A is o remain in contact with
e slope, the tension in S, cannot exceed mgy/3
and hence fnd the maximam possible acceleration
of the system.
&) Show that the ratio between the tensions in S, and S is V3 4, independent of the
aceeleration of the system.

13 A vehicle of mass 3t is towing a trailer of mass i up an inclined plane by means of a towrope.
The resistance force on the vehicle is R and on the trailer is 2R. A braking force P is applied to
the vehice, and both it and the trailer slow down with the towrope still taut. Find the tension
in the towrope in terms of P and R, and hence show that for the towrope to remain under
tension. the braking force must be less than SR.

Connected particles

‘This term is usually reserved for situations where objects are connected by
strings passing over pulleys or other supports.

First, let us examine the simplest situation: two objects connected by a string

which passes over a single pulley. Below is a list of the factors which may have

an effect on the motion of the system.

© Mass of the objects Clearly this is a crucial factor in determining what
happens. In particular, it is the comparison between the masses which
matters. Two masses which are very different are more likely to swamp
some of the other factors lsted below than are two similar masses.
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 Size of the objects This w.u onlv have a significant influence if they are
large enough for air re: 0 have a noticeable effect.

@ Mass of the string A string with significant mass has different tensions at
different points along its length. In addition, the amount of mass on either
side of the pulley changes s the string moves. The importance of these
effects depends on how massive the string is compared with the objects.

® ‘Stretchiness’ of the string I the string changes length when it is put under
tension, the effect will be that the two objects will not necessarily be going at
the same speed or have the same acceleration.

« Friction at the pulley If there were no friction. the tensions in the string on
cither side of the pulley would be equal, but friction in the pulley would
cause them 10 be different

© Mass and radius of the pulley These can be considered together because
what really matters is the moment of inertia. This s a concept you will not
encounter unless you are doing further mechanics, but essentially it
determines how much turning force is needed to accelerate the pulle
depends on the size of the pulley and the distribution of mass within it. A
pulley with a significant moment of inertia would “use up’ some of the
available force to get it turning. We could, of course, replace the pulley with
a fixed peg, but then friction might become more significant

‘» How the system is set in motion We assume that the system s released with
the strings hanging vertically. If this is not so, there may be some pendulum-
like movement which could affect the motion.

To set up a model to allow for all the above factors would be very complex
‘The usual thing is to work with the simplest model and only introduce other
factors if the model fails adequately to match what happens experimentally
‘The simple model makes the following assumptions.

® The objects are particles. That is. they are small enough 1o be treated as
mass concentrated at a single point.

 The string is light. That is. its mass is so small compared with that of the
bjects that we can regard it as having no mass.

 The string s inextensible. Its length alters so little under tension that we can
treat the length as effectively constant.

 The pulley is smooth. That i, the frictional resistance in the pulley is so
small compared with other forces that we can treat it as 7ero friction.

 The pulley is light. That is, the force needed to accelerate the pulley is
negligible.

With these assumptions, we can state that the tension is the same throughout
the string and that the motions of the objects are the same in terms of
aceeleration, speed and distance travelled, albeit in opposite dirctions.
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Example 0 Particle of mus 3kg and $kg ure atachod to the e of s
pulley. The system
relased from res. Find the aceeeraion of th sstem and the tension in
the string.

soumon

First, we write down the equation of motion
for each of the masses separately

For the Skgmass: Sg—T=5a  [1]

For the 3kg mass: T—3g=3a [2]
We then solve these simultaneous equations. ag "
Adding [1] and [2], we get N
2% =8
= a=}g=245ms? ,(N

Substituting the value for  n [2], we obtain

Note In Example 9 we chose the positve direction separately for each object
rather than s & universal posiive diecton. This 1 common racic

Testing the model

If you have access to suitable equipment, you might try testing the model to
how good its predictions are. The main limitation will probably be your
ability 10 time the motion of the system accurately enough. The masses used in
Example 9 would not be suitable, because they are rather large and because the
predicted acceleration is quite high. The system would move 2m in about 1.3

seconds, which is too short a time to measure accurately.

Youwill need iment 10 find the most For
example, masses of 95 grams and 100 grams would be expected to move 2m in
about 4 scconds. Work out the predicted acceleration and travel times for various
combinations of masses and then compare them with your experimental findings.

If the system moves more slowly than predicted (it should not move faster),
you may need to adjust the model. The most likely additional factor to allow
for is the friction in the pulley. The simplest model for this is to assume that it
‘makes the tensions differ by a fixed amount F N. The equations of motion in
the previous cxample would become

For the Skg mass:  Sg — (T+ F) = 5a m

For the 3kg mass: T-3=3a 6]
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Use your experimental results to find an estimated value for . You can then
use this refined model to predict the behaviour of the system with  new pair
of masses and test this prediction against reality.

Itis unlikely that you could go beyond this with a simple experiment, but in
theory you could successively refine the model either by examining whether the
friction is dependent on the speed of the system, or by including some of the
other factors listed on page §5-6, until the agreement between prediction and
practice is as close as desired.

Example 10 A block of mass 4 kg rests on a horizontal table. It is
atached by mean of a g, inextensible seingto s purticle ofmiss 0
The string passes over th pulley at the edge of the table, as shown.
There i & icional esistance of 20N opposing the moion of the block
Find the acccleration of the system, the tension in the string and the
resultant force acting on the puley.

sownon
First, write down the equations of motion
for the two objects.

Forthe 9kg mass: 9¢~T=9a (1]
Forthe 4kgmass: T-20=4a  [2]

Solving these equations gives

=525ms™ and T=410N

To find the force on the pulley, we need to realise ALON
that each part of the sting excrts  tension force on

the pulley, as shown in the diagram. Therefore, we have
0N

acting at 45° to the horizontal.

Example 11 A block of mass 3 kg s attached by light, inexxcmihu strings
to particles of mass 5kg and § kg. The strings pass over smooth at
cither end of a smooth horizontal bl as shown. Find the acceleration
of the system and the tensions in the two strings.

soumon
“This time the tensions in the two strings are different. So we have three
equations of motion.
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For the 8kg mass: 8¢~ T, =8a  [I]

For the 3kg mass: T —

For the Skgmass: Ty—Sg=5a  [3]
We then solve these simultancous equations.
Adding [1] and 2], we get

8g-Ty=1la 7]

Adding [3] and [4], we get
=16 = a

Sg=184ms?
Substituting in [1], we have

8g-Ty=l4g = Ti=6lg=6IN
Substituting in [3], we have
g=582N

T-g=fig = T

Exercise 5C

1 Two partcles of mass Skg and 7 kg arc connected by a light, inextensible string passing over a
smooth pulley. Find
a) the acceleration of the system
b) the tension in the string
©) the force on the pulley.

2 Two particles of mass 2kg and 3 kg are connected by a light, inextensible string passing over a
smooth pulley. The system is released from rest with the 3kg particle a distance of 4m above
the ground. Find the acceleration of the system and the speed at which the 3 kg particle hits the
ground.

3 Two particles of mass m and 2m are connected by a light, inextensible string passing over a
smooth pulley. Find the acceleration of the system and the tension in the string

4 A block of mass 3kg rests on a smooth table. It is connected by a light, inextensible string
passing over a smooth pulley at the edge of the table to a 2kg particle hanging freely. Find the
acceleration of the system and the tension in the string.

5 A block of mass 4 kg rests on a table. It is connected by a light, inextensible string passing over
a smooth pulley at the edge of the table to a 5 kg particle hanging freely. There is a friction
force of 20N acting on the block. Find the acceleration of the system and the tension in the
string,
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& A block of mass 2kg rests on a smooth table. It s connected by  light. inextensible string
passing over a smooth pulley at the edge of the table to a 3 kg particle hanging frecly. The
block starts from rest at a distance 1.5m from the pulley. Find the acceleration of the sstem
and the time taken for the block to reach the puley.

7 A block of mass 4 kg rests on a smooth plane

B
inclined at 20° to the horizontal. It s conneted by / T
alight, inextensible string passing over a smooth
pulley at the top of the slope to a 3 kg particle .

hanging freely. Find the acceleration of the system
and the tension in the string.

8 A block of mass 1 rests on a smooth plane inclined at 30° to the horizontal, It is connected by
a light, inextensible string passing over a smooth pulley at the top of the slope to a second
particle of mass m hanging freely. Show that the system accelerates at +gms-2, and find the
tension in the string.

9 Blocks of mass 3 kg and 2kg are connected by a

||gm inextensible string and are placed on a
mooth, horizontal table as shown, with the string

it The 2k block is comnected by a similar
string passing over a smooth pulley at the edge of
the table 10 a 4kg particle hanging freely. Find the
acceleration of the system and the tensions in the
strings.

0 A block of mass Skg placed on a smooth,
horizontal table is connected by light, inextensible
strings passing over smooth pulleys at opposite
ends of the table to particles of mass 4 kg and 7kg
hanging freely. Find the acceleration of the system
and the tensions in the strings.

A block of mass 2u placed on a smooth, horizontal table is connected by light, inextensible
strings passing over smooth pulleys at opposite ends of the table to particles of mass m and 3mt
hanging freely. Find the acceleration of the system and the tensions in the strings

2 A smooth plank AB of length r is fixed with A on horizontal ground and B a distance  above
the ground. A block of mass n is placed on the plank and is connected by  light, inextensible
string passing over & pulley at B 10 a particle of mass m hanging freely. The system is set in
motion with the block at A and the particle at B. Find thc acceleration of the system and show
that the time taken for the particle to reach the ground

2
Ve
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13 Particles A and B of mass 2kg and 5 kg respectively are connected by a light, inextensible
string passing over a smooth pulley. Initially the system is at rest with A on the ground and B
at 3m above the ground. The system is released. Find

) the acceleration of the system
b) the speed with which the system is moving when B hits the ground
©) how much further A will risc before coming instantancously to rest.

14 A block of mass 3 kg placed on a smooth,
horizontal table is connected by light, inextensible
strings passing over smooth pulleys at opposite
ends of the table to particles of mass | kg and 4kg
hanging freely. The system starts from rest and
moves 2m, at which point the d:\undmg particle
strikes the ground and stops. Fi

a) the speed at which the system is moving when this happens
b) the further distance which the rest of the system moves before.
coming instantaneously to rest.

5 A particle of mass m rests on a smooth plank AB 5
inclined at 60° to the horizontal. It is connected by a %)
light, inextensible string passing over a pulley at B to a
particle of mass M hanging freely. A rests on horizontal
ground and B is a distance & above the ground. The
system s released from rest with the particles at A and
B respectively. Show that the speed at which the
descending particle hits the ground s

PA

If the ascending particle just reaches B before coming instantancously o rest, show that,
im=2:V3

3

The diagram shows an object A of mass 5kg connected by a
light, inextensible string passing over a smooth pulley to a box
B of mass 4kg. There is an object C of mass 2kg resting on
the horizontal floor of the box. Find

a) the acceleration of the system
b) the reaction between C and the floor of the box.
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17 The diagram shows a version of what was known as

‘machine, which was used as a means of

estimating ¢. Two objects, both of mass A, are

string passing over a smooth
pulley. The system starts from rest with one of the
masses at A as shown, and a small rider of mass i N
attached to it. The system moves a distance f, at
which point the mass Af passes through a ring B
which removes the rider. The system continues to
move at uniform speed and the mass s timed in its
descent from B to C, a distance k. If the system takes
a time ¢ in moving from B to C, show that

g
g
gE

h@M+m)

2mr

Systems with related accelerations

In the situations examined so far, the various parts of the system have had the
same acceleration. When this is not the case, it is necessary to find the
relationship between the various accelerations before the problem may be
solved

Example 12 In the diagram, the pulley A is free In move
and the pulley B s fved. A lgh,inextensble st

aver pulley B and carres pulley A o one end and & puricle
of mass 6 kg on the other. A second, il string passes
over pulley A and carries particles of mass 2kg and 4k
The pulleys are light and smooth. Find the tensions in
strings and the accelerations of the three masses.

souwnon
Suppose the 6 kg mass is moving downwards with
acceleration a. (If it is, in fact, moving upwards, the value
of a will turn out to be negative.) Pulley A would then
have acceleration a upwards.

carries, those particles would have an acceleration, f'say,
relative 10 A. As A also has an acceleration, the total
aceeleration of the 2kg mass would be (f+a) upwards and of the
4kg mass (£~ a) downwards, as shown.

If the whole system comprised pulley A and the particles it l




SYSTEMS WITH RELATED ACCELERATIONS

There e four unknown quantities in this problem — a, £, Ty and T~ so

four equations. We find the cqllnlmns of motion for the three
pnmcl:s and for pulley A. Notice that as pulley A is described as light, we
treat it as having zero mass.

For the 6kg mass:  6g— Ty = 6a m
For the 4kgmass:  4g — T3 = 4(f— a) ¢l
For the 2kg mass: T3~ 2g = 2(/+a) e]
For pulley A: T,-2T,=0 [l
We now solve these equations.
2xEqu(]+3xEqn (2] = 24g-2T,-3T; 6]
Eqn [1] -3 x Eqn (3] = 12¢-T, 161

Eqn (5] +2 x Equ 6] = 4847, ~9Ty =0 m
Substituting from [4] into [7), we get

48g 17

48

=B 2miN
= B=je
Substituting back into [4], we get

T

=, 553N
17‘z

Substituting back into [1), we get

,%g:o,mm'z

Substituting back into [2], we get

FE—'M‘GM:

Example 13 The diagram shows fixed
pulleys A and C and another, B, which

s free to move. The pulleys are light and
smooth. A light, inextensible string passes
round all three pulleys, as shown, and
carries particles of mass 2kg and 4kg.
Pulley B carries a load of Skg. Find the
tension in the string and the accelerations
of the three masses.
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souumon
Suppose the system were released from rest. In a time 1, the 2kg mass
would fall a distance  ar* and the 4kg mass a distance L/i°. The string
around pulley B would therefore shorten by +(a +/)i°. This would be
shared evenly between the two sections of that string and so pulley B
would rise by 4 (a+/)r*. If the acceleration of pulley B is ay, we have

Lay? = a4
= ag=14@+/)

We can now write down the three equations of motion.

For the 2kg mass: 2~ T=2a m
Forthe dkgmass: g —T'=4f 6]
For the Skg mass: %m +f) 3

We solve these equation.

From [1]:

= From 2} f=g—
g rom 2 f=g-7

Substituting into 3], we get

(Zg—%T) =

Substituting back, we obtain

5

80

L

af

a=2g=285ms? and f-g-348ms
Tl s

Related accelerations also occur where objects are moving on surfaces which
are themselves free to move.

Example 14 A wedge of mass 4kg whose
inclined at 30° to the
horizontal is free to move on a smooth
horizontal surface. A particle of mass 2kg
is placed on the smooth sloping face of the
wedge. Find the acceleration of the wedge.




SYSTEMS WITH RELATED ACCELERATIONS

Suppose the accleration ofthe wedge s/ Frosapric
and the acceleration of the partic] K
relative to the wedge. R is e eacton
between the particle and the wedge.

The first diagram (page 94, bottom) shows the forces acting on the wedge.
If we resolve horizontally and use F = ma, we get

Rsin30° =4f m
‘The second diagram (above right) shows the forces acting on the particle.
Its acceleration has a component dnwnwards of asin30° and to the left of

(acos30° - j) Resolving in these directions, we get
~ Reos30° = 2asin 30° @
and Rsin30° = 2(acos30° - f) 6]

From (1), we have R = 8. Substituting into [2] and [3], we have
—4pi=a )
and 6f=av3 15
We now solve these equations.
Eqn (5]~ VixEqn[d] = 18/-2v3=0
- g

189ms

Exercise 5D

1 In each of the following diagrams the pulleys are light and smooth, the strings are light and
inextensible and the surfaces are smooth. Find the accelerations and tensions

a b E)
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@9 o ) -
2 Particles of mass m and m; are connected by a

light, inextensible string passing over three light,

smooth pulleys, two fixed and one free to move,

as shown. A particle of mass m; is suspended from

the movable pulley. The system s released from rest.

Show that if the movable pulley remains stationary

R
(my +my)

3 The diagram shows a particle of mass i resting
on the smooth inclined surface of a 30° wedge of
‘mass M, which in turn rests on a smooth horizontal
surface. The system s released from rest. Show that _A
the acceleration of the wedge is

mgy3
w4
[Hint Consider resolving the forces on the particle at right angles o the slope.]

4 The diagram shows particles of mass 3kg and Ske
connected by a light, inextensible string passing over a
smooth pulley at the vertex of a wedge of mass 10kg.
‘The particles rest on the smooth sloping surfaces of the
wedge, which are inclined at 45° to the horizontal. The

wedge is free to move on a smooth horizontal plane.
Find the acceleration of the wedge and the reaction
between the wedge and the horizontal planc.

5 A smooth fixed plane is inclined at 30° to the horizontal. A wedge of mass M and angle 30° is
held on the surface so that its upper face is horizontal, and a particle of mass m rests on this
face. The system is released from rest. Show that the resultant acceleration of the particle is

M+ myg
M +m




6 Calculus in kinematics

Mark this, that there is change in all things.

Velocity at an instant

On page 35, we looked at displacement-time graphs. In particular, when the
velocity of a body is constant, the graph is a straight line and the velocity is
represented by the gradicnt of the graph. So, we have

displacement
¥ “Time taken to change
When the displacement-time graph is not linear, Tgngent

the gradient changes. But i is sill true that the
gradient at a point on the graph represents the

velocity at that instant. In calculus, we find the f—Graseatot
gradients of graphs by differentiation and we H tangent here
can use this technique here. That is, we write a w

ocity
hatnsont

Time

larly, for acceleration

[ azd
&
Any derivative formed by differentiating with respect to time creates a rate of
‘change. Thus velocity is the rate of change of displacement and acceleration is
the rate of change of velocity.

Just as we can differentiate these variables, we can also integrate them. On pages
36-9, we give examples in which the area under the velocity-time curve represents
change in displacement. This area can be found by integration.

Jndl and s I\'sll

‘These results allow us to solve kinematics problems whatever the acceleration
of the body, whereas the equations on page 42 are valid only when the
acceleration is uniform.

In genral,

[
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Example 1 A paric, travling long 8 siright wir rom 3 poin A, bas
a velocity of = 0 and an acceleration of —

2 3 s::m\ds

a) Find its vclm:uy when ¢
b) Find its 2,3 secor
3 Find how far i s traveled during Ihc s 3 sconds of it mion.

soumon
D) v:Jad::j-em:
==3+¢ (cis the constant of integration)
When 1=0,v=6 = ¢ =6, which gives

v=-3046

[vu. - [(—1:’ 6yt
£ 4614k (kis the constant of integration)
When 1= 0,5=0 = k=0, which gives

—1 460

o 1 2 3
s| o s 4 9

) The particle travels from A and passes through B when 1 = 1 (see
diagram below). At that moment, it is still moving to the right at 3ms™"
But during the second second, it stops momentarily, before returning
through C and A and finally travelling to D. After this time, it continues
to travel 10 the left in the diagram and at an increasing speed.

x
=0

3

P
To find the total distance travelled, we need to find out where it comes
to rest. At this point, v = 0. Therefore, we have

_ae
=

Al4 or —1414




VELOCGITY AT AN INSTANT

We take ¢ = 1414, because its negative valuc is inappropriate in the
context of the problem.

‘The position of the particle is given by
s=—0 460
— L4140 +6 x 1.414 = 5.6569
“The total distance travelled in the first 3 seconds is, therefore,
(5.6569+5.6569 + 9)m =20314m

An extended model

Example 2 A car is travelling between two sets of traffic lights. Starting
from rest at the first set of lights, it accelerates up to a maximum speed
before slowing down 10 a stop at the second set of traffic lights. The
motion of the car is modelled by the following formula for . the
displacement of the car from its starting point:

iz’«s -1

#) Find an expression for the velocity of the car and from this find the
times at which the car is stationary.

b) Find an expression for the '\c«l:mlmn of the car and from this find
the time when the acceleration is 0.

©) Find the distance between the traffic lights.

d) Find the maximum velocity of the vehicle.

d: d (1
ds_d (1 s
o a a:(as ”)
1
o oyexu-L
- -

When v=0,1=00r =30,

Whena=0,1=15.
©) The distance between the lights s given by

530 = 500) = g 3 S = 30) - 0= 300

So, the distance between the lights is 300m.
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@) The maximum velocity occurs when the acceleration is zero and is
given by

1 2
15=2x15-Lxis =15
W19 =23 15—l

So, the maximum velocity is 15ms

Revising the model

We are not told what assumptions were made in formulating the model in
Example 2. However, we notice that when the car reaches the second set of
irafTic lights,whist i . velcity f sro i s stopped moving it has an
acceleration given by a(30) = —2ms~2. In this situation, the car will start to
move backwards! In fact, the original formula indicates that when 1 = 45,
and the car will have returned to the first set of lights. We can limit the effects
of this formula by stating that it is valid only for 0 < £ < 30.

Clearly, this is a fault in the way that the model was devised. Ideally, we want
a situation wher when £ = 0 and 1 = 30, and also at the point of
maximum velocity between the lights.

The expression for acceleration can be modelled by a cubic (there are other
alternatives) of the form

a= Ki(t = 15)(t = 30)

where K is a constant to be determined. This satisfics the condition that a = 0
when 1 . 30.

In order to find the velocity, we use

four

Jx,(,_ 15— 30)dr

- IKU’ — 45 44500 dt

= v=K(4r* =156 4225() ¢ (cis the constant of integration)

‘The required initial conditions, v = 0 when 1 =0, give ¢ = 0. Hence, we have
K3t =150 +2250%)
LKA - 308

=

‘The vehicle comes to rest when v = 0. The solutions to this are = 0, 0, 30, 30.
‘Thus, there are only two occasions in the motion when the vehicle is
stationary, both of which correspond to traffic lights. So, another of our
conditions has been satisfied




VELOCITY AT AN INSTANT

We are now in a position to investigate the displacement of the car.
- Jvdl = ]m:‘ — 150 250 &t
s s= Kot w0y ¢
)

The initial conditions s = 0 when 1 = 0 give ¢’ = 0. So, we have

- %(P — 756 +1500r°)

‘The other boundary condition is when 1 = 30, 5 = 300. This gives K = s

“The vehicle reaches its maximum velocity when a = 0 at £ = 15. This gives
12656.25Kms !

Using K the maximum velocity is 18.75ms . This s a reasonable value,
but perhaps & hllk in excess of the speed limit in an area where most traffic
lights are to be fou

Our final model has produced the following formulae:

ot~ 15)(¢ - 30)

a 675( X - 30)

v —(:bsm’wnm‘)

§=——(r’ =7 15000°)
\500(' 5t + 15006%)

‘The graphs of these functions, for 0 < 1 < 30, are shown below.

H

H

5
Displacement, s (m)

[ E)
e, 1)

[} E)
e, )

In the solution to this problem, we identified significant features of the motion
by substituting appropriate values of s, v and a. The techniques are common to
many problems and are generalised beloy

» Itis usual to take the start of the motion as the origin, so that

£= 0.1 we know s in terms of 1, we can then find the times at v
utting s =

We would, of course, expect 1 = 0to be one o the roots ofthe equation

ich the object
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On the rare occasion that the starting point is not the origin but at some
displacement s = k (k # 0). we would. of course, form the required equation
by putting s - &. The equation would still have ¢ = 0 as one of is roots.

@ An object comes instantancously to rest when its velocity is zero. This
corresponds to a stationary point (a maximum, minimum or point of
inflexion) on the displacement-time graph.

A maximum or minimum point indicates that the direction of the objeet’s
motion reverses. For example, the motion of an object bouncing up and
down on the end of a piece of elastic has two extreme positions (at the top
and bottom of the oscillation), and by setting v = 0 we can find the times at
which it reaches these positions.

I we wer o extend the dispacement-time graph (o our model of he
motion of the car beyond 7 = 30, we would find that it has a point inflexion
at 1 = 30. This means that the mad:l has the car slowing to rest but
immediately starting forward ay

© A moving object achicves its maximum (or minimum) velocity when the

aceeleration is zero. In our model for the motion of the car, this happened
when 1= 15,

Exceptionally, zero acceleration could indicate a point of inflexion on the
velocity-time graph.

Exercise 6A

1 A particle, moving in a straight line, starts from rest at O and has an acceleration (in ms %) at
time ¢ given by a = 30~ 61
o) Find its velocity and position at time 1.
b) Find its velocity an
©) Find the greatest positive displacement of the particle from O.
d) Find how long the particle takes to return to

2 A particle, moving in a straight line, has a velocity given by v = 61— 3 ms .
) Find its change in position from time £ = 1 1o time = 3.
b) Find the distance it travels from time ¢ = 1 to time 7 = 3.

3 The velocity of a particle, travelling alon

traight line. is given by v = 4+ 6, where the
positive direction is to the right. At time

0, itis 8m 1o the left of point A.

o) Find an expression for the position of the rmruclc attime t.

5) Find a what times the pa

© ) Find how long it takes the particle to ench e point A
1) What is the significance of the second solution to part b?




VELOCITY AT AN INSTANT

At time 1 seconds, its displacement, s metres from a

4 A particle, P, moves along a straight wir
fixed point, O, on the wire is given by

()

sin

3

a) Find the position of the particle when 1 = 1,23, 4, 5 and 6 seconds.
d the velocity of the particle at the same times.

) Find the acceleration of the particle at the same times.
@) What will happen to the particle at times after 1 = 67

s

5 A particle, P. is moving along a straight wire. At time  seconds, its displacement, 5 metres
from a fixed point, O, on the wire is given by

((* ~ 16)

a) Find the time(s) when P is at the fixed point O.

b) Find the time(s) when P is not moving.

©) Find the displacement of P from O when P is stationary.

d) Find the acceleration of P when 1 =

In parts a and b, interpret any apparently inappropriate roots of your equations.

& A particle is moving along a line and has an acceleration given by a = (21 ~ S)ms%. When
' e has a velocity of 2ms" and has a displacement of +8m.

a) Find an expression for its velocity al time .
b) Find when the particle is at rest.

©) Find where the particle is when it is at rest.

7 A bird leaves its nest flying along a straight line t0 an adjacent tree, where it collects some food
without landing. It then returns o its nest along the same line. Its position is modelled by the
formula

$=300-1
where s is measured in metres and 1 is measured in seconds,

) How long does the journey take?
b) How far away s the second tree?
©) Criticise the model

s position, measured from the point O, is given

8 A particle is moving along a straight line and
by the formula

s=0-2 142

where s is measured in metres and ¢ is measured in seconds.

) Find the times when the particle is at .
b) Find the velocities and accelerations at the times when the particle is at O.
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9 A ball is thrown straight up in the air. Its height at time 5, /im, measured from the ground, is
given

h=4+80-502
a) Find how long it takes the ball to reach the ground.
b) Find an expression for its velocity, .
©) Find its velocity when it reaches the ground.
) Find the maximum height reached by the ball

€) Explain why the expression J v does not represent the distance travelled by the ball.

10 A safety device. designed to bring a moving body to a stop. moves so that the displacement, 5,
of the body from the datum point is modelled by
S=6+6e
2 Howfu romthe datum point ¢ the body whcn
) What is the vel the body at the
o) Whi i the acccleraton of the body at e times gn:n"
@) Are there any shortcomings with this model?

. 1,2, 3, 4, § seconds?

11 A particle moves so that its acceleration at time 1 is given by
20
a=
I

a) Find an expression for the velocity of the particle given that, at time 7 = 1, it has a
velocity of 60ms!

b) Find for the di of i that,at 7 = 1, itis at the origin.

©) Describe the motion of this particle as f increases.

Acceleration as a derivative

So far, the variables of motion - s (displacement) and ¥ (velocity) - have been
expressed as functions of time and we have used the relationships

v=% ang ;:[m
i

and v= J" ar

From these we can derive two further expressions for the acceleration, the first
of which is

4 (ds
ogo5(5)




ACCELERATION AS A DERIVATIVE

‘That i, acceleration is the second derivative of displacement with respect to
time. At this stage, this merely reinforces what we already know: namely, that
integrating acceleration once gives velocity, and a second time gives
displacement.

‘The second expression relates acceleration to velocity and displacement. Using

the chain rule for differentiation, we obt

& _dvds_ dv
& asdr ds

a

This second form can be used to solve problems when acceleration s given as a
function of v and/or .

al form of the expression for a, as dv/dr, can also be used when
acceleration is given as a function of v, or as  function of both v and ¢ in
special circumstances.

Example 3 A particle moves in such a way that its acceleration is given
by

When ¢ = d v = 10, Find a relationship between the velocity
and ) ime and h) displacement.

Usi == t

o Usnga= & e e
a1
dr 6v

‘We can solve this differential equation by separating its variable (sc
pages 423-5), giving

J6\-dv>Jld:

= W=tie
‘The initial conditions. v = 10 when £ = 0, give
3102 =0+c = =300
Hence, we obtain

=t

2 e get
ds’

300

b) Using a =
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: &1

&
Separating the variables and integrating, we have

Jﬁv:dv:Jld.\

= wossk

“The initial conditions, v = 10, s = 0 when 1 =
20100 =04k = k=2000
Hence, we obtain
207 = 542000

Exampl vl slving iferensl equaions by thetechniqe known s
(he tion of variables. This and other methods for solving differential
equations are covered on pages 420-40.

Variable forces

Bodies undergo variable acceleration as a result of their being subjected to
variable forces. These can arise in many ways. For example, the motion of a
body in a resistive medium is opposed by a force which is usually a function of
the velocity of the body. Again, the force acting on a body as a result of

ational attraction is inversely proportional to the square of
the body’s displacement (the inverse square law). Such situations arc explored
in Examples 4 and 5.

Example 4 A small body of mass  is 10000km above the surface of the
Earth and is travelling towards it at a speed of 200ms~". Find the velocity
of the body when it reaches a point 1000 km above the Earth’s surface.
(The mass of the Earth is 5.98 % 10 kg, its ra 7 10°m and the
universal gravitational constant, G, is 6.67 x 10~ Nm®kg~2)

soumon
We saw on page 51 that the gravitational force between objects of masses
my and m, separated by a distance d is given

_ Gmymy

= Smms

Let the distance of the body from the centre of the Earth be sm. The

[C

_399x 10




VARIABLE FORCES

Expressing the acceleration of the body as v% and applying Newton's
second law, we have
99 x 104m

‘The acceleration is negative because s has its positive direction away from
the Earth. Separating the variables and integrating, we get
104
erffj"“’g 10"
s
¥ 399x10%
S=22X 0 e
2 s
‘The body is initially 10000000 + 6 370000 = 16370000m from the centre
of the Earth and travelling at 200ms~" Subsnlunng these values, we have

=

99 % 104 N
W2 e o em 4IRS (o nearstintege)
which gives
"
39X W07 _ 4353855
2 s

When the body is 1000 km from the surface,
1000000 + 6370000 = 7370000

Hence, we have ~ 24353855 = 29784 548

-

So, the body is travelling towards the Earth at 7720ms~! (to 3 sf).

Example 5 A particle of mass » moves in a straight line on a horizontal
surface against a resistance of ngﬂ ude k12, e »
particle and K is a constant, If the initial speed is ¥, show that the

displacement, 5, of the particle rom ts il pmllmn attime 1 is given by

Separating the variables and integrating, we obtain
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dv

. So, we have

1 ds__mv
L - ds__mV__
v dt m kvt
Separating the variables and integrating, we obtain

:lLd,
kL
= x:%mmumnc

When ¢ =0, s = 0, giving C = — 2! Inm. So, we have

3

_%ln(m+kl’1)—%lnm

= 14k V:)
m
as required.
Exercise 6B

1 A particle, P, is moving with a constant acceleration, a, in a straight line. When s, the
displacement of the particle from a fixed point, O, is zero, the particle has velocity u.

By writing the acceleration as ¥ %, derive the formula ¥ = &2 + 2as.
s

2 A partice moving aong s, s an acokration v, where vns”! s e velociyat
'hen the particle is 10m from a fixed point, O, on the line, it is travelling at

by
a) Find an cxpression for the velocity of the particle in terms of its displacement, sm, from O.
b) What happens to the distance of the particle from O as time increases?

3 A body moves along a straight line away from a fixed point, O. Its acceleration is modelled by
the formula a = ~4s, where s is the displacement of the body from O. If the body starts from
O with a velocity of 3ms-", find an algebraic relationship between v, the velocity of the body,

ds.




EXERCISE 68

4 The acceleration of a particle, moving along a straight line
is the velocity of the particle at time ¢ seconds after starting
velocity of 10ms~! and is at a fixed point, O, on the line.

~2/v, where vms~!
motion. Initially,

a) Find an expression for the velocity, v, of the particle in terms of the time, 1.
b) Find an expression for the velocity, v, of the particle in terms of the displacement, sm,
rom

5 A particle moves along a straight line with an acceleration 2y ms~, wl
velocity of the parice at time 1 scconds after staring s motion. Initally, the particle
fixed point O, on the line, travelling with a velocity of 2ms-!

a) Find an expression for the velocity, v, in terms of the displacement, 5.
b) Find an cxpression for the velocity, v, in terms of the time, 1.

& A body in space has an acceleration towards the Earth given by —£3 B here g s the

acceleration due to gravity at the surface of the Earth, R is the radius of the Earth and s is the
distance of the body from the centre of the Earth.

a) By writing aas v j <, integrate the equation and find the relationship between v and s.

b) Assuming e body has zero velocity when its height above the sotace of the Earth is H,
show that the v:locuy of the body as it lands on Earth can be written

[ZAR
Vr+H
) If H s small compared with R, show that this reduces to same value as given by the

equations for constant acceleration.
@) What is the equivalent result if  is very large compared with R?

7 The acceleration, a, of a body falling through the air, with air resistance acting on the body, is
modelled by the equation

a=10-2v
where v is the velocity of the body. The body is dropped from rest when ¢ = 0 and s = 0.

a) ) By writing aas % integrate the equation and show, provided v < 5, that

—In(s —¥) =2+
where ¢ is an arbitrary constant
0 Usingthe iniial condiions. T the value of  an hence find an expression for v in
) lmegmu: his equation and find an expression for s in terms of ¢ satistying the initial
conditions.
b) i) Show that
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W By writing a as v ? in the original equation, integrate the equation and show, provided

v< 5, that

=SIn(5—v)-v=2+k

where k is an arbitrary constant.
iili) Using the initial condllmns. ﬁnd the value of k and hence show that

2w
n (L) -
5 5
8 A body moves along a straight line so that its acceleration towards a fixed point, E, is given by

= —20cos 21, where ¢ is the time after the body has been released. Initially, the body is at rest
Sm from E.

a) Integrate the equation to find v in terms of r.
) Integrate your equation rom part a to find s in terms of £
©) Show that the acceleration can be written as a = —

@) By wiiting a as » :— integrate the equation in part ¢ to obtain a relationship between

vand s
) Show that your result from part d is consistent with your results from parts a and b

9 A uniform, heavy rope of length 4m lies on a straight line perpendicular to the edge of a
smooth horizontal suface with 0.5m of its length hanging vertically from the edge. The rope is
released from rest and slides completely over the edge without encountering any obstacle. If the
mass per unit length of the rope is kg, and the length of the rope overhanging the ed;
time 75 is xm, write down the equation of motion of the rope, and hence find the speed with
which it leaves the surfac

10 A particle of mass 2kg is attached to one end of an elastic rope, the other end being fixed to a
point on a smooth horizontal plane. The particle is held on the plane so that the rope is
stretched 3m beyond its usual length, and is then released from rest. Given that the force
exerted by the rope when it is stretched by an amount ¥m is 400x N, find the speed of the
particle at the moment when the rope goes slack.

km .
S, where x is its

A particle of mass m is attracted towards a point O by a force of magnitud

displacement from O and k is  constant. If the particle is released from rest at a distance

from O, show that when it is halfway 10 O its speed is

A body falls from rest in a medium whose resistance is kv? N per unit mass. Show that after it
has fallen a distance




7 Kinematics in two and three dimensions

Space may produce new worlds
JomN MILTON

On pages 97-108, we investigated the motion of bodies moving in one
dimension. In this chapter. we extend these ideas to two- and three-
dimensional motion and develop a model for motion through the air under the
effect of gravity. Before we do this, we develop the necessary mathematical
t00ls by looking at the effect of differentiating and integrating a vector with
respect 10 a scalar.

Differentiating and integrating a vector with
respect to a scalar

‘The variables of motion,
terms of the unit vectors,

and a, are vectors and can therefore be written in
nd k.

In one-dimensional motion, when we differentiate Ihc dlwluccmcm of a body
with respect Lo time, we obtain an expression for its Similarly, when
we differentiate the velocity of a body with repect "o ime. we abitin n
expression for its acceleration. Extending this idea to vectors in general, we can
write

dar

d
V=@ er v=g

d
asg® or

The Teft-hand expression

's emphasise what is being done. The right-hand
xpressions are what we usually write, The two forms are
interchangeable.

However, these expressions do not tell us how to perform the differentiations
or the related integrations.
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16 we write £ = xi+ yj + zk, then we have

(xi -+ yj+2K)

i

d d
= V=g e+ oh+

In this expression, v, x, y and  are variables, but i, j and k are constants,
Therefore, we have

o] oo s

ax
a

b l.ul expression shows that, in order to differentiate the vector
, we simply differentiate cach of the components in turn and treat
Thewnt vectors ke ny other consant.

Example 1 Differentiate the vector r = (40)i + (3 ~ 5¢%)] with respect to £.

soumon
Writing r = xi + yj, we have

=4 and y=3-52

from which we obtain

4 and

dr
ar

i+ (3 - 100f

Note The intermediate steps of differentiation are shown in Examples 1 and 2
as explanation, but would not in practice be written down.

Example 2 Differentiate the vector v = 4cos (i +4sin 1] with respect 10 1.
soumon
Witing v = xi + yj, we have

4cost and y=dsint




DIFFERENTIATING AND INTEGRATING A VECTOR WITH RESPECT TO A SCALAR

from which we obtain

& dsine and L deost

= 9 dsinri+dcost)

We can treat the integration of a vector in a similar way by writing

fra

+yj+ 2k, we have

[- dr and

Putting a =

v J.d :l(x|+)'j1»xk)dl
= v J.d=lxidl+ly,d1+l:km

Tn this expression, v, 4, x, y and z are variables but i, j and k are constants.
Thercfore, we have
:)k

oo e (e

‘Thus, when we want to integrate a vector with respect to a scalar, we integrate.
cach componeat and treat the unit vectors like any other constant.

Example 3 Integrate the vector S = 67i + (21 — 9r%)j with respect to 1.

a
soumon
We write
dr_dv. dy
Srodr o
ar "ar e
which gives
R
@ ar

ing these two expressions, we obtain

2

o =304

where ¢; and c; are constants of integration. Therefore, we have

F=Q2 4 a)i+ (-3 +e)f
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Notice that the final result in Example 3 can be written as
F=3004 (0 = 30)j 4 (qi + )
or r=300+ (0 - 3)j+e
In the second version, each of the components has been integrated individually,
ignoring the need for an arbiaryconstant, which has been added at the end. This

consan ofnegrton s be o teckor. As ustal,we fnd e vale of s vctor
Consat from thé il condiions of thepariuir problems,

Example 4 Integrate the vector s (3¢ = 81)j with respect to 1.

Find the particular solution given that r = 5i — 6] when ¢ = 0.

+ (317 - 81)j, we obtain

24 =)t e

‘This is the general solution, in which ¢ is an arbitrary vector constant. To
find the particular solution, we need the value of c.

condition,

To find the value of ¢, we use the initi
which gives

6 when t =0,

—6j=0i+0j+c =

5i-6j

Substituting for ¢ in the general solution, we obtain the particular
solution:

r=200% (1~ 4+ 5i-

Q@ +95)i+ (7 -4 - 6)j

Notation

In mechanics, we often have to differentiate and integrate functions with
spect Lo time. In fact, since most real-1ife mechanics problems involve some
form of change over a period of time, our mathematical models predominantly

involve establishing a differential equation with time as the independent
i, there is an alternative notation for

g

ar
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This notation saves time, but you should be particularly careful when using it
1o make sure that you have the correct number of dots in the correct place.

Thus, we have

v=a i

For example, the opening equation in Example 3 can be written as
Q-9

Equations like this, containing f or  (sometimes both), are called differential
equations. We solve them, as you have seen, by integration. More complicated
examples need more sophisticated techniques to solve them (see pages 105-6
and 420-40). All the examples we use in this chapter can be solved by direct
integration.

i

= Example § Differentiate the vector r = (32 +20i + (2 — ) + 4°Kk with

soumon
Writing r = xi + yj + zk, we have

=3¢+

from which we obtain

2=

642§

= b= (614 2i+Q-20j+ 120k

Exercise 7A

1 Differentiate cach of the following vectors onee only with respect to f.

a) r=dri+§+20)) b) r= (2 = 40i + (1 = 25
+30§ dv=(t- )i+ (3, -3
156 5)j 1) v=15i+ 100§

(20
sin 260 + 3 cos 21j — 5tk h) r=2cos ll+2$m’1|+\/k

i+ 2costj — 4sin L1k

10§
20— 617)i + (3¢ - 40)j
3 - 60i + (21— 90)]

Scosti — Ssinj+ 6k

i+ (4 - 5nj

v =4ri 4+ dcos (j + 2sink
) v=~8sini+§cos (f + 4k
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3 For each of the following differential equations, find the particular solution giving the
expression for r consistent with the stated values.

when 1=0.

i+ 2j when £ = 0.

Sk when £ = 0.

+ 8%, given that r = 2i
sin £+ 2], given that r
Ssin fi — Scos ] + 3cos 2rk, given that r

4 For each of the following differential equations, find the particular solutions giving the
expressions for v and r consistent with the stated values.

3 — 20+ (2 — 6¢%)], given that ang

05 201 + 8 5in 21j, given that v = 2i +j and r = 4]

(@ — 3)i+ (61 — 2)k, given that v = 2i = 3jand r =i+ + 2k when 1 =

imensions

Motion in two and three
We can solve kinematics problems by using the calculus techniques developed

in the previous section, remembering to use the known values (called initial
conditions or boundary conditions) to find the vector constants of integration.

Example 6 An aircraft is flying in such a way that its position vector
relative to a watchtower is given by

= 150¢i + 2001 + 600k

where the unit vectors i, j and k are measured in the directions ast, north
and vertically upwards respectively. All distances are measured in metres
and time in seconds.

# Fiad capresions for
elocity

ind the position of the aircraft when ¢ = 0,
W) Find the speed and dmcuon of the aircraft.
i) What is the sigr e k of the di

sownon
a) i) To find the velocity, v, we differentiate

1501 + 200 + 600k

which gives
150i +200f

i) To find the acceleration, a, we differentiate v:

a 0 (Note that 0 is the zero vector.)
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2 b)) Whenr=0.r= G600k So, the aircraft is directly above the watchtower.

1) The speed of the aircraft is given by
¥l = VIS0TF 2007 = 250ms!

‘The direction is given by the angle 0, where

irection, or on

ives the direction as 53.12° from the i
bearing of approximately 037

1) The k-component is a constant, indicating that the aircraft is
in level flight at an altitude of 600 m.

Example 7 The unit vectors i and j are the base vectors for a plane. A
particle is moving in the plane with a constant acceleration of 2j. At time
1= 0, the particle is at the point i + 4] and has a velocity of 3i — 4]

a) 1) Find an expression for the velocity of the particle a time 1.
1) Find an expression for the position of the particle at time 1

b) Plot the path of the particle over the interval 0 < ¢ < 5, marking on it
arrows representing the directions of the velocity and of the
acceleration for =0, 1,2,3, 4 and 5

sownon

) ) Integrating a

j this to find the veloci

¥. we get
v=2j+C
where C is an arbitrary constant.

To find C, we use the initial condition, v = 3i — 4] when £ = 0,
which gives

¢ = c=

0j+ i—4j
Thus, the velocity at time ¢ is given by

V=2 E3i-4i = v=3ib Q-4

which is the required expression
i) Integrating again, we have

=30+ (7 - 40j+K

where K is an arbitrary constant
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i+4j when 1

To find K. we use the initial condition,
which gives

PH4i=0iH0j+K = i+4j=K
Thus, the position at time ¢ i given by

i+ (- 40j +i+ 4

G+ D4 (= 40+ 4)f

b) The expressions for a, v and r give the following results:

] 0 [ 2 3 4 s
o i i 100+ [ 130445 [ 161495
v | si-4i 3i [ sie2 | ditdg

a 2 2 2 2

Example 8 Two particles. A and B, leave the origin at the same time. The
position vectors of the particles are

= (8- 20+ @1+ )
=i+ 6+ 14

) At what times are the particles moving
i) in the same direction
1) in opposite directions
i) perpendicular to each other?

) What are the positions of the particles at these times?
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a) The dircction of motion of any body is determined by its velocity.

‘The velogities of these particles, vy and vy, are found by differentiating
£ and ry respectively:

w=@B-4ni+@

20j and vy = (4+20i+ (6430

i),i)  Whether they are moving in the same direction or in opposite directions, vy =
where & is some constant. If k > 0, they are movin; me direction. If k < n.
they are moving in opposite directions. In cither case, we have

= @200+ 20 = 6+ 308 - 41)
= 44 160+16=48— 127

= 41

0 = (= 1)(+2)

=

or

‘We can reject the negative solution, since it does not satisfy the practical aspeets of
the problem. Therefore, when 1, we hav

YA =4i+6] and vy=2i+3]

Thes voctors are parall, i v = 21, So, pantles A ad B aro moving inthe
same direction. Since thi Al acceptable solution o the problem. the partces
are never moving in opposite irections. (n fact, when

i) When the particles are moving perpendicular to each other, the scalar product vy.vg of
their velocities is zero. This gives

(8 =404 +20) + (4 +20(6 + 31)

= @+204-n=0

We have already established that = 2 s not an acceptable solution, so the only time
at which the particles are moving perpendicular to each other is ¢ = 14, This gives

VA = —48i+ 3

and vy = 32 + 48]
b) The positions of the particles at 1 = 1 and 1 = 14 are as follows:

) Whenr=

=6i+5] and ry=

+7i

W When =14 ry=-280i+252) and ry=252i+378)
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Exercise 7B

1A particle moves in a plane in such a way that its position at time  is given by
r= (3= 2)i+ (4 - 209

) Find an expression for the velocity of the pamd:

3 Mark on your diagram arrows
representing the directions of the velocity and of the acceleration at the times indicated.

2 The velocity of a particle moving in a plane is given by
V== 2)i+ 065
0. the particle is at the point whose po:

Attime n vector is 2i

a) Find an expression for the acceleration of the particle
b) Find an expression for the position of the particle.
©) Show that the particle is never stationary.

) Find the average velocity over the time interval £ =0 t0 1 = 3.

3 The position vector of a moving particle is given by
r= Q4304804+ (64 0+ 1260

Find an expression for the velocity of the particle at time 1.
2 Find an expression fo the accelration of the paricl a tme 1.

An observer placed at the origin sees the particle in the direction given by tan0 = y/x, where
s n vector of the particle at that time. The direction in which the particle
is actually moving is given by tan ¢ = b/a, whe +bjis the velocity vector of the

partice at hat i, The parice will b maoving direely away from or dirctly towards the

observer when tan 0 = tan ¢.

€) Find the time(s) when the particle is moving directly away from or directly towards the observer.

@) Find the position of the particle at the time(s) found in part ¢, identifying whether the
particle is moving away from or towards the observer.

4 An aircraft s flying at an altitude of $00m at a speed of 960km ! on a bearing of 030", At
time ¢ = 0, measured i it passes directly over an observer. Taking the unit vectors.
and k. in the directions east, north and upwards respectively, measured from the observer,

) write down the velocity vector, v
b) find the position veetor, r, of the aircraft £ hours after passing the observer.

5 A particle moves so that ts displacement is given by

ses( ) s4n(2)

) Find its position when £ =0, 1, 2,3, 4, 5, 6 scconds and plot these points.
b) Find an exprssion for the velocity of the particle at time ¢

r




MOTION WITH UNIFORM ACCELERATION

) Find its velocity at the times given in part a and draw an arrow on your diagram to

cach velocity.

) Find the speed of the particle at the times given in part

@) Find an expression for the acceleration of the particle at time 7.

1) Find the acceleration of the particle at the times given in part a and draw an arrow on your
diagram to represent each acceleration.

F

& A particle is moving in a plane so that its acceleration is given by a = ~2j. At time £ = 0, it is
at the point whose position vector is 2i — 3 and it has a velocity of 2i + 4.
a) Find expressions for the velocity and d“plmmem of Ihc paﬂu,lc attime 1.
b) At what time is the particle moving parallel to
©) At what times does the particle cross the i~ i

7 Two particles have velocitis given by
N=QWiHE+D] and v
At time 1= 0, both particles are at the origin

a) Find the time at which the particles are moving perpendicular to each other.
b) Find the position of each particle at this time.

-4

8 A parti a ha way that from the origin at time ¢ s given by

r=Scos (%)( Ssin ("7‘)1+2/k

a) Find the displacement of the particle at times ¢ = 1,2,3,4, 5,6, 7, 8,9, 10 scconds.

b) Sketch the displacements found in part a and also the path taken by the particle in its
motion.

©) Describe the motion of the particle.

) Find expressions for the velocity and the acceleration of the particle.

Motion with uniform acceleration

Below we recapitulate the equations relating to the motion of a particle in a
straight line with uniform aceeleration:

‘When we are dealing with motion in two or three dimensions in which the
aceeleration vector is constant, we need 1o restate these equations in vector
terms. Thus the variables become
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il velocity u =i+ 1 + ik
v=witnjsnk
Acceleration @ = i + 4z + ask
Displacement 1 = xi +yj + 2k
Time '

Each component corresponds to motion in a straight line with uniform
acceleration. So, for example, we have

w+at
s+ st
us +ast

which give

Wi+ i+ k= +a)
=i+ + k) + @+ @+ k)

(s + )] + (s + )k

y=u+ar U]
Similarly, we have
@2
Bl
“

“The remaining formula requires a more sublle change.

-+ 2as involves the product of a and s. Since these are now the vectors a
and 7 e ncd 1o consider the scala product of a and £, From (1] we st

T

and from [3], we get

2

e
These give
2ar=(v-ulu+v)
= dar=vy-wu=v -
= P=widar 15)

which, unlike the previous four equations,

a scalar equation and gives the




Projectiles

n we frequently need to model is that of a projectile. That is, an
object moving freely through the air under gravity. Unless the object is
buffeted by strong side winds, it i effectively moving in two dimensions. An

sport originated when soldiers competed (o see who could throw a 161b shot
the furthest.) We are going to investigate the problem of how a shot putter can
get the maximum distance from a putt.

If you have access (o the spreadsheet SHOT 1, you may wish to explore
simulation before continuing. (SHOT 1 is available on the Oxford University
Press website: http://www.oup.co.uk./mechanics)

1 The real problem
n a shot competition, the athlete must putt the shot as far as possible. At
what angle should the shot be projected in order (o achieve this?
2 Setting up the model
What factors will affect the throw?
There are several factors which may affect the distance the shot is put. Some

of them are:

s Angle of projection » Wind direction and strength
 Height of the shot putter © Air resistance

» Physical build of the shot putter o Speed of projection

© Mass of the shot

Simplifying assumptions

In order t0 simplify the problem, we assume the following:
o The shot is a particle.

o There is no air resistance.

‘o The shot putter has zero height.

o The acceleration due to gravity is constant.

o The initial position of the shot is at the origin.

Variables and parameters

. we use the following symbols

v Displacement of the shot at time 7, where 0 Angle of protection
F=x m Mass of the shot

i Horizontal wnit vector & Acceleration due to

J Vertical unit vector gravity

U Speed of the shot at the point of projection

PROJECTILES
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3 Formulating the mathematical model
During flight. the only force acting on the shot is its weight, —mg]. Hence, the
cquation of motion (Newton'’s second faw) is

—mgj=ma

= a=-gj 1
‘Thus, the acceleration of the shot is constant and is vertically downwards.

4 Solving the mathematical model
We can use the cquations of motion with uniform

acceleration. v
o

We know that the initial velocity, u, is given by

! L s

Ucos0i+Usind

Using v = +ar, we get

v = Ucos0i+ Usin0j —grj
= v=UcosOi+(Usin0~gnj ]

Equation [2] gives us the horizontal and vertical components of velocity at any
time.

Us

ing r=urtdar, wegel
= (Ucos@i+ Usin0j) — i
= r=(Utcos@)i+(Utsin0 — 4 gr))j 3

Equation [3] gives us the horizontal and vertical components of displacement
at any time.

“The task we set ourselves is to find the value of 0 which produces the
‘maximum range. We therefore need an expression for the horizontal
displacement, x, of the shot at the moment it hts the eround.

From [3), the vertical displacement of the shot at time  is

Because we assume that the shot putter has zero height, the shot hits the
ground when y = 0. So, we have

Ursin® — Lgi




The value of £ = 0 s the time of projection. so the shot hits the ground when
2Usin 0
G

From [3], the horizontal displacement of the shot is x = Urcos 0. Hence, when
the shot hits the ground. we have

2U Ocos
¢
Using the double-angle formula sin 20 = 2sin O cos 6, this becomes.

[ Range

‘The maximum range oceurs when sin2
5 W= = 0=45

Range =

“

“The model therefore predicts that the maximum range is %. which is attained
when the angle of projection is 45°

5 Comparing with reality

It would be quite difficult t0 test our conclusion experimentally with an actual
shot putter. But if we examine our initial assumptions, we can see that one of
them — ‘the shot putter has zero height" — is implausible. and 5o we explore
how the model could be adjusted on pages 132-3.

In fact, for other situations where an object s projected from ground level, such
asa ball being kicked, it can be shown experimentally that, for small objects and
Tow speeds, d ides a realistic soluti

Example 9 A golf ball i hit towards the pin with a velocity of S0ms~" at
an angle of 30° to the horizontal.

) If the pin is 180m away, how far from the pin will the ball land?

b) What is the furthest the ball could be hit with this initial speed?
souumon

We assume that the ball is a particle, that somss

there is no air resistance and that

o) The initial velocity, u, of the ball is given by T

u = 50083071 + 50sin 30°j = 25v/3i + 25§

PROJECTILES

10ms
We ke unit vctors s shown in the disgram. iy



CHAPTER 7 KINEMATICS IN TWO AND THREE DIMENSIONS

Note

The acceleration of the ball is ~10j.
Using £ = ur+ Jar?, we get
(25V3i+25))1 - 53]
25V31i+ (250 - 511

‘The vertical displacement of the ball is y = 25/ — 5¢, and the ball hits
the ground when y = 0. Therefore, we have

280-52=0
= S(5-n=0

= 1

‘The value 1 = 0 corresponds to the instant the ball was struck, so the
ball lands when 1 =

‘The horizontal displacement of the ball is x = 253 1. So, the distance
travelled by the ball is

25V3 % 5 =216.5m

Hence, the ball lands 36.5m beyond the pin.

b) The maximum range is achieved when the angle of projection is 45

“This gives an initial velocity of
U= S0cos 45T+ S0sin45°j = 25V3i + 25V3]
Using r = ur+$ar?, the displacement of the ball at time ¢ is

= (25V2i+25V2))1 - 5%

= r=25V2ri+(25v2r

“The ball lands when the vertical displacement 25v2¢ — 5¢% = 0. That
5V2.

is, when 1 =0 or

The value 1 = 0 is the projection time, so the value ¢ = 5v/2 is the
landing time. The maximum range is, therefore,

25V2x 52 =250m

In Example 9, part b, we could have used the formula we derived for

the maximum range, but for examination purposes it is better that you derive
the result cach time from the basic equations.
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Exploring the model further

On page 124, we derived the following equations for the velocity and
displacement of a projectile:

= Ucosli + (Usin0 — gn)j 2

= (Urcos )i+ (Utsin &)

“These can be used to solve other related problems. We consider three of them:

hieving maximum height, hitting a target on the ground and finding the
equation of the flight path.

Maximum height
The projectile is at the highest point of ts flight when the vertical component
of velocity is zero. That is,
Usin0—gr =0
Using
2

Notice that, according to our model, this is exaetly half the time the projectile
spends in the air.

= Ursin0 — }gr*. So, substituting the value of 1,

The vertical displacement is
we have

Ulsin’0 _ U%sin’0
¥ 2%

which gives

Maximum height = 2500
%

Example 10 A boy kicks a bll from the et
ground with a velocity of 12ms~" at an
angle of 60° to the horizontal. Can the ball

clear a fence $m high? n

We make the following assumptions: 3

 There is no air resistance

 The position of the fence corresponds to the highest point in the ball's
trajectory

o g=98m
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Taking unit vectors as shown in the diagram, the initial velocity, u, is
given by

2c0860°i + 125in 60 = 6i + 6/3]

‘The acceleration is a = ~9.8. Using v = u -+ ar, the velocity of the ball at

time ¢ is given by

= (61 +6v3]) — 9.81]

i+ (6v3 - 9.80)

The ball reaches maximum height when the vertical velocity component is

zero. That is, when
6Vi-981=0 =

Using r

i+ Lar, the displacement of the ball at time ¢ is given by

r=(6i+6vV3j)1 — 4977
6i+(6v31 - 490))

=

‘The maximum height is the vertical component of displacement when

_33
e (39) -+ (5

Thus, the ball can clear the fence, provided that it s at or near its
‘maximum height as it passes over the fence.

‘Therefore, we have

Maximum heigh

Hitting a target
Suppose that an object is projected from the ground with initial speed U and
angle of projection 0, and that we require it 1o hit a target on the ground at a
distance R, which is less than the maximum range. On page 125, we derived
the following expression for the range:

U?sin28

Range

8
So, we have
Ulsin20

In gsera, wmng this equation gives two complementary values 0 = & and
=0
(You may have noticed this if you tried the spreadsheet investigation SHOT 1.)
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Example 11 A shell i fired with a velocity of 200ms~" at an angle 0 to
the horizontal, to hit a target on the same level 3000 m away. At what
angle of projection should the shell be fired?
soumon
Making the usual assumptions and taking g = 9.8ms~2, we have

Initial velocity of the shell: u=200cos 0+ 200sin0 j

Accleration:

a=-98j
Using

=i+ }ar?, the displacement of the shell at time ¢ is given by
£ = (200cos0i + 200sin )1 ~ 498
= r=200cosf1i+(200sin07—4.97)j
“The shell lands when the vertical component of displacement is zero.
200sin0 - 497 =0
which gives

200sin6)
49

0 or

‘The value 1 = 0 is the time of projection, so the shell lands when
200si

49
‘The range is given by the horizontal component of displacement at this
time. So, we have

Range = 200¢cos0 x w

Using the double-angle formula sin 20 = 2sin 0cos, this becomes

‘The required range is 3000m. So, we have s,
20000sin 26
2T 3000
49
= in20=0735
T oamas e By S —
= 23.7° or  66.3° (1o 3sf) & T o

Note that the two possible angles of projection are complementary (add
up 10 90°).
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Equation of the path of a projectile

On page 124, we derived the folloy
projectile at time i:

ing expression for the displacement of a

¥ = (Urcos )i + (Ursin0 - }gr)j 6]
xity]

where  r

Equating components, we have

Urcost 151
= Ursin0 Lgr* 0]
From [5], we have

=X
Ucosh

Substituting for  in [6], we get

2
(x
L(Ucosﬂ) 0=y (mmn)

xtanf - (K “‘"") I
w2

This equation gives y as a quadratic function of x and so, according to our
model, the path of the projectile is a parabola.

Note  As with the range, it is better to learn how to derive the equation of the
path of the projectile than to try to memorise it
Example 12 A projectile is launched Wms

with a velocity of 40m s at an angle
of 30° to the horizontal. What is the
equation of the path of the projeciile? 1t A
)

(Take g = 10ms

souwnon

With the usual assumptions and taking unit vectors as shown, we have;

Initial velocity: u = 40cos 30° i +40sin 30" j
0731+ 20

10f

Acceleration:  a

Using r = ut -+ Lar?, the displacement of the projectile at time £ is given by
r=(20V31420f)r - 5%
= r=20V3ti+Q01-50)j
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But, we have
r=xityi

So, equating components, we get

x=20V31 m

and y =20t -5 21

From [1], we get

X
20V3
Substituting for 1 in [2], we obtain the equation of the projectile’s path;

rea(z)-s(58)

So, the path s a parabola.

Note  Knowing the equation of the projectile’s path could be used to solve
other problems, but in practice it is usually better 10 solve problems starting
from the basic cquations of motion.

Example 13 A ball is kicked with a velocity of 10ms~!

at an angle of 40° to the horizontal towards a wall toms
which is 7m away.
) How far up the wall docs the ball hit?
b) What is the speed of the ball when it hits the wall? | =
&) In what dircction is the ball moving when it hits :
the wall?

soumo
We make the usual assumptions and take g = 9.8 ms™%,
‘With unit vectors as shown in the diagram, we have
Initial velocity: u = 10cos40° i + 105in40° j
Acceleration: = ~9.8j
Using v = -+, the velocity at time ¢ is given by
¥ =(10c0s40° i+ 10sin40° ) ~ 9.81)
= v=T.660i + (6428 - 980)]
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Using r = ut+$a 2, the displacement at time 1 is given by
= (10cosd0° i + 10sin40° j)r — 4.94%
= r=76601i+(6.4280-4.90)f
) The horizontal displacement of the ball at time  is 7.660r.
When the ball has travelled 7m horizontally t0 hit the wall, we have

7.6600=7 = 09138

‘The height of the ball at time  is 6.428¢ ~ 4.9¢%. So, when the ball hits
the wall

Height = 6.428 x 09138 — 4.9 x 0.9138*

178m (0 3s0)
b) The velocity of the ball at this point is

¥ = 7.660i +(6.428 — 9.8 x 0.9138)]

= 7.66i - 2.53)
The speed at impact is the magnitude of this velocity. So, we have
5
V= VI66 T35 = 8.07ms !
<) The direction of the motion is given by the angle ¢ : }“‘
in the diagram, where
253
=258 0=183
wnl=76 <

So, when the ball hits the wall, it is travelling in a direction 18.3° below
the horizontal.

Revising the model

Finally, let us return to the problem of the shot putter. We can now adjust our
model to allow for the height of the putter.

The equation r = ur + §a 2 assumed that the shot started at the origin. If, in
fact, it starts from position vector s, the equation becomes

s+urtiar m

In our case, s = j, where J is the height of the shot above the ground when it
is released. As before, u = Ucos i + Usin j and the acceleration is ~gj, so [7]
becomes
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hj+(Ucos0i+ Usin0jyi - Lg%
Utcos i+ (h+ Ursin0 — Ler?)j
‘The shot lands when

=

i+ Ursing —$gr* =0
‘This is a quadratic equation in ¢ whose roots are

Usin0 + /T sin’0 + 2gh

g

Onc of the roots is negative and can be rejected.

‘The horizontal displacement of the shot is Urcos 0. Substituting the positive
value of ¢ gives

2 in0cos 0+ Ucos 0y/T7
Range = L sin0cos0 + Ucos0y/Tsin’0 + 2gh
g

This expreson s more comple than that produccd by the previou,smplr
‘model, and maximising it is not casy. If you have access 1o the spreadsheet
SHOT 2, you can explore the model. You will find that the maximum range
‘occurs when the angle of projection is slightly less than 45°, with the exact
value depending on the height of the point of projection.

(SHOT 2 is available on the Oxford University Press website:
http://www.oup.co.uk/mechanics)

Exercise 7C

1 A projectile is launched from ground level with a speed of 1Sm s~ at an angle of 35° to the
horizontal
) For how long s the projectile in the air?
) What is the horizontal range of the projectile?
©) Find the time taken 10 reach maximur height,
@) What is the greatest height reached?

2 A projectile is launched from ground level with a speed of 10m ! at an angle of 60° to the
horizontal,

) For how long s the projectile in the air?

) What is the horizontal range of the projectile?
©) Find the time taken 10 reach maximum height.
@) What is the greatest height reached?

3 A particle is projected from a point at ground level with a speed of 24ms~' at an angle of 50°
10 the horizontal. A wallis situated 30m away from the projection point.
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a) Find how far up the wall the particle hits it.
b) What is the speed of the particle when it hits the wall?
<) Find the direction of motion of the particle when it hits the wall.

4 James s throwing pebbles into the water. He finds that the greatest distance that he can throw
them is 80m. Assuming that his height is negligible, how fast does he throw them and how
long do they take to hit the water?

5 The maximum range of a projectil, fired with speed U, is R. A target s placed hm above the
landing point. Find the apted wih which it must be prjected if 5 to b this trget wilhout
changing the angle of projection.

6 Two projectiles are released simultaneously from the same point with the same speed, one at an
angle of elevation 0, and the other at an angle of elevation a. Show that, during flight,
2) the line joining the two particles has a constant gradient
b) the distance between them is increasing at a constant rate.

7 A projectile, released with a velocity U at an angle of elevation 0 to the horizontal, just clears
1w obstacles, both of height /im, whose distances from the projection point are hm and 35 m
respectively. Find the range of the projectile.

8 A ball is projected with a velocity of (30i + 40j) from a point on the ground.
a) Find the position of the ball 1's and 25 later.
b) How long would the ball stay in the air if the ground were level?
©) Find the range of the ball.
d) Find the equation of the path of the ball.
‘Take the value of g to be 10ms~2.

9 A ball was projected at an angle of 60° to the horizontal. One second later another ball was
projected from the same point at an angle of 30° to the horizontal. One second after the second
ball was released, the two balls collided. Show that the velocities of the balls were 12.99ms!
and 15ms™". Take the value of g to be 10ms™.

10 A netball is projected with a velocity of 2v/5(i + 2j)ms~" towards a net. Take the point of
projection as the origin and ignore air resistance. Assume g =
) Draw a diagram showing the forces acting on the ball whilst in flight.
b) Write down the equation of motion of the ball and from it find expressions for the velocity,
v, and the position, ., of the ball at a subsequent time, ¢ seconds after projection.
©) Find the equation of the path of the ball.
‘The net is Sm away from the point of projection.
@ lrmc ballis to pass through the net, how high above the point of projection should the net

o By considering the velocity of the ball, show that it is moving downwards as it passes
through the net.




Examination questions

Chapters 5 to 7

Chapter 5

1 The radius of the carth is R and the acceleration due to gravity at the earth’s surface is g. The
gravitational force acting on a particle P of mass m, when it is at a distance x, x > R, from the
km

centre of the earth, hus magnitude *

where k is a constant.

&) Find k in terms of R and g.

At time 1 = 0, P is projected vertically upwards from the surface of the earth with speed
V(1.6gR). At time 1, it s at a distance x from the centre of the earth and is moving with
velocity v.

Tgnoring the effects of air resistance, and the motion of the earth,

Rg
s

dv
b) show that S =
) show that v

) Hence find, in terms of R, the greatest height of P above the earth'’s surface.

2 A lift cage in a mine shaft is carrying a passenger
of mass 80kg. The cage s being pulled up the
mine shaft by a cable and is accelerating at a rate
of 3ms™

@) Taking g = 10ms2, find the reaction of the
floor of the cage on the passenger.

b) State the magnitude and direction of the s
reaction of the passenger on the floor of the
cage.  (NEAB)

3 A tractor of mass 1600 kg is pulling a trailer of mass 800 kg along a level muddy field. The
driving force of the tractor is 7000 N and the resistances to motion acting on the tractor and
trailer are 1000N and 1200 N respectively.

i) Show that the common acceleration of the tractor and trailer is 2m s~
their motion.

in the direction of
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The tractor and the trailer are conneeted by a light, horizontal coupling, as shown in the
diagram.

Coupling

i) Calculate the tension in the coupling.

‘The coupling between the tractor and the trailer breaks at the time when the speed is 2.7
‘Assume that the resistances to motion and the driving force of the tractor do not change.

11 a) Show that the deceleration of the trailer is 1.5ms 2.
b) Calculate the distance moved by the trailer as it comes to res
©) Calculate the distance between the tractor and trailer when the trailer comes to rest
¢

(MED

4 Coupling Coupling

Diresion ofmosion

A train made up of a locomotive and two trucks is travelling along a straight, level track.

‘There s a driving force of 10000 N from the locomotive. The resistances to forward motion are

500N on each of the trucks and 1000 N on the locomotive. The masses of the locomotive and

the two trucks are shown in the diagram.

#) Draw a diagram showing all the horizontal forces acting on the locomotive and on each of
the trucks, including the forces in the couplings.

i) Show that the acceleration of the train is 0.1 m:
couplings.

With the first locomotive still exerting a driving force of 10000N, a second locomotive is

added 10 the train. This locomotive is behind truck B and has the effect of applying a forward

force of 4000N to

1) Show that the coupling between trucks A and B is now under a compression of 2000N.

‘The sccond locomotive has a mass of 40000 kg and resistance to forward motion of 800 N.

Calculate the forces in each of the two

i) Calculate the total driving force of the second locomotive.  (MEI)
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5 Two particles of mass 4m and m respectively are joined by a light inextensible string passing
over a smooth peg. The particles are held at rest with the string taut and then released from
[E——

a) State which of the underlined words enables you to assume that
1) the tension is constant in the string on either side of the peg
) the tension is the same on both sides of the peg at the points of contact with the string.
b Weite down the cquaion of motion of each particle and determine the acceleration of the
particles  (WJEC)

Light, inextensible strings AC and DF are attached one to each side of a block of mass 11 kg
which is on a rough horizontal table. The string sections BC and DE are parallel to the table
and the strings pass over smooth pulleys at B and E. Objects of mass Skg and 12kg are
attached to the free ends A and F respectively of the strings and hang freely. The diagram
shows this system. A constant friction force of 35N opposes the motion of the 11 kg block and
all other resistances to motion are negligible. The system is released and moves from rest.

1) Draw three separate diagrams showing all the forces acting on the block and on the two
hanging objects.

i) Show that the magnitude of the acceleration of the system is 1.2ms"
tensions in the strings AC and DF.

‘When the system reaches a speed of 4ms", the string DF breaks at D. The fri

the 11 kg block is unchanged.

iif) Calculate the total distance travelled by the block, after its release from rest, before it
comes instantancously to rest.  (MEI)

Calculate also the

ion force on

7 A trolley of mass 2kg can move on a horizontal
table. One end of a light inextensible string is
fixed 1o the trolley. The string passes over a
smooth pulley at the edge of the table, and a ®
wooden block B of mass 0.5kg hangs freely at
the other end of the string. The part of the strin
between the trolley and the pulley is horizontal (see diagram). Resistances to the motion of the
system, from all causes, are modelled as a constant horizontal force of magnitude F newtons
acting on the trolley.

1) The system is released from rest with B at a height of | m above the floor, and B hits the
ﬂoor 2.55 later. Use this information to mlcuhlt the acceleration of B while it is fall

he speed with which it hits the floor
in H:noe find the value of Fand the (cnsmn in the string whil

Bis falling.  (OCR)
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A small parcel A of mass 2 is free 10 move on the face of a wedge which is inclined at an
angle of 30° to the horizontal. The wedge is fixed on horizontal ground. One end of a string i
attached to A and the string passes over a small smooth pulley fixed at the point P, which is at
the top of the wedge, the string remaining parallel to the line of greatest slope of the wedge.
‘The other end of the string s attached to a ball B of mass 3m which can move frecly in a
vertical line below P, as shown in the diagram. The pulley is at a height & above the ground.
Thiepeel e i el s mocell] s prcicle, oo oo ot wecos & atmitn 1
be smooth, and the string is assumed to be light and inextensible. The system is released fror

et with thesiring aut and B iially at the fovl of P I the period befoe B hits the ground,
the magnitude of the acceleration of B is

a) State which assumption i

acceleration of A is also f.
b) Write down an equation of motion for A and an equation of motion for B.
©) Hence show that f = 3¢.

the modelling of the situation implies that the magnitude of the

When B hits the ground, it rebounds vertically in such a way that it initial speed on leaving
the ground is the same as its speed just before it hit the ground. The string then becomes slack
and A continues 1o move up the wédge. Given thal, when B reaches the highest point on its
initial rebound from the ground, A has just reached the pulley P,

@) find the length of the string in terms of . (EDEXCEL)

A box of mass 80 kg i t0 be pulled along a horizontal floor by means of  light rope. The rope
is pulled with a force of 100N and the rope is inclined at 20° to the horizontal, as shown in the
diagram.

i) Explain briefly why the box cannot be in equilibrium if the floor is smooth.

In fact the floor is not smooth and the box is in equilibrium.
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1) Draw a diagram showing all the external forces acting on the box.

1) Calculate the frictional force between the box and the floor and also the normal reaction of
the floor on the bos, giving your answers correct to three significant figures.

The maximum value of the frictional force between the box and the floor is 120N and the box

is now pulled along the floor with the rope always inclined at 20° to the horizontal.

Iv) Calculate lhe force with which the rope must be pulled for the box to move at a constant

speed. our answer correct 10 three significant figures

W) oeulte the acclertion of he box f the rope s pulled with a foree of ON.  (MED

10 A skier, of mass 60'kg, i being pulled up a slope by a rope as shown in the first diagram. The
qnpe isat zn~ to the horizontal and the rope is at 10° to the slope. The skier is to be modelled
a particle with forces acting as shown in the second diagram. Assume that the magnitude, £,
oFth resistance foree % 80

a) Show that when travelling at a constant speed, the tension in the rope T is approximately
290N and find the magnitude, R, of the normal reaction.

b) Tnitially the skier accelerates at 0.1m s~ Fmd the magnitude of the tension in the rope
while the skier is accelerating.  (AEB

Chapters 6 and 7
11 The acceleration ams~* of a particle P at time ¢ seconds is given by
a=3i+2j

When 1 =0 the velocity of P is (21 +pms-
@) Find the velocity of P when £ = 2.
When =2, the direction of motion of P makes an angle 0 with the vector j,

b) Find, to the nearest degree, the value of . (EDEXCEL)
12 At time  seconds the position vector, r metres, of a moving particle P is given by

£ = (2~ )i+ 4cos3tj + dsindrk

Find
@) the velocity vm s~ of P at time  seconds
b) the time when v and r are perpendicular to each other.  (WJEC)
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19 A golfball s trck foma pint 0 o horiontal ground so at nidally it i moving ith

25ms! at an angle tan”'(}) to the horizontal

) Write down cxpressions for the horizontal and vertical components of its displacement from
O at any subsequent time 1.
b) State two physical assumptions that you have madle in determining the displacements.

©) Determine the time to reach maximum height and find the range as predicted by your
model.  (WIEC)

Darts are thrown at a vertical dartboard. The trajectory of each dart thrown is in a vertical
lane.

=3

One dart is projected horizontally from a point 1.7m above a horizontal floor and 3m
way from the dartboard. This dart strikes the board at a point which is 1.6m above the
floos

&) Show that the time taken for the dart to reach the dartboard is 4th of a second.

b) Show that the speed with which the dart was projected was 21 .

©) Find the angl, in degrees correet to one decimal place, which the trajectory of the dart
makes with the vertical when it strikes the dartboard.

A second dart is projected from the same position at 20m

‘point which is 1.8m above the floor.

a) Find the angles, in degrees correct to one decimal place, to the horizontal at which the
dart could be thrown.

b) If there is a horizontal ceiling 2.8 m above the floor, state which is the appropriate angle
of projection.  (NICCEA)

1. 1t strikes the board at a

‘The diagram shows a stone projected horizontally o—p sms !
with speed Sms~! from the top of a vertical c
at a height of 19.6m above sea level. The stone
strikes the sea at the point Q.

a) Find lh: nme taken for the stone to reach sca
level a e of Q from the base of
me cllﬂ'

ind the tangent of the angle between the

horizontal and the direction of motion of the S T

stone just as it strikes the sea at Q. (WIEC)

A ball is thrown with speed 7v/T0m s from the top of a vertical cliff at an angle of 0 above

the horizontal. The top of the clifl is S0m above a horizontal seashore. The ball first strikes the

scashore at a horizontal distance S0v3m from the point of projection,

#) Find the only possible angle of projection.

i) Find the direction of motion of the ball just before it strikes the seashore.

i) Give one assumption that you have made in answering parts | and il of this question.
™
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—_— ———————

Lim

During a practice session, a brukclball player throws a ball towards a horizontal ring of centre
A In a simple model this ball is treated as a particle.

a) The ball is first projected at a spttd of 8ms~! and at an angle of 40° to the horizontal, from
a point at a horizontal distance of 4.6m from A and 1.4m below A.
1) Find the time taken for the ball to travel a horizontal distance of 4.6m, giving your
answer correct 1o two significant figures.
1) Taking g = 10m s, show that the ball passes below A.
) The plavr hrows agsin from the same poin s befor, He projects the bl t an angl of
0 the horizontal but increases the speed of projection to ¥'ms-
1) Determine the value of ¥ for which the ball passes through A
1) Show that, for this value of ¥, the ballis descending a

passes through A, (NEAB)

The diagram shows Ihc lrnjevlur) of a tennis ball during a serve. The server's racket hits the

ball ata point A wi above the ground, and pmjcm the ball towards the receiver

veloci wmpontnls Ums~" horizontally and ¥'ms~! vertically downwards. The

server and the ¥ arecach at & disance of 131 horizontaly from the nct, and the bl

‘bounces halfway between the net and the receiver. The receiver’s racket hits the ball 0.6 after

the serve, at the point B. Assume that the ball may be treated as a particle, that air resistance

may be neglected, and that the ball’s horizontal speed is unaffected by the bounce.

1) Show that U = 40.

W) Find the value of ¥, and show that the ball clears the net, which has a height of 0.91m, by
approximately 0.24m.
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1) The point B is 0.75m above the ground. Calculate the direction in which the ball is

travelling when the receiver’s racket hits
Suppose now that air resistance is taken into account, but that the other assumptions and all
the given distances and times remain unchanged. State, with a reason, whether the value of U is
larger or smaller than 40. ®)

19 A particle P, of mass 0.2 kg, moves under the action of a resultant force, F newtons, which at
time ¢ seconds is given by

=20

a i) Thr velocity of P when 1 =

is 2i ms~'. Find an expression for the velocity of P at time

) Find th time at which the dicction of P s mamcnmnly paralll o j
1l Show that the speed of P at time ¢ is given by /(1 +
b) The particle passes through the points A and B at times 1 = | ind 1 = 4, respectively
Calculate the distance AB, giving your answer in the form #v/2, where n is a positive integer.
(NEAB)

20 A submarine ires 4 torpedo, of mass m, horizontall int0 the water at a specd of 30ms ™. It
continues to move horizontally subject to a resistance force of magnitude mkv?, where k is a
constant and v s the speed of the torpedo at time 1. The torpedo hits a target, which is 100m
away from the submarine, at a speed of 10ms

8) Find an expression for "—: and show that

b) Also show that

1
kv
T35

where ¥

the distance of the torpedo from the submarine at time 1.
) Find the time the torpedo takes t0 reach the target.  (AEB 97)

21 A luggage transporter at an airport is designed so that luggage is moved smoothly from one
Tocation to another taking a total time of 3 minutes. The luggage starts from rest and moves in a
straight line. For the first 60 seconds, the acceleration of the luggage is constant and is equal to
S last 60 seconds, there is a constant deceleration of f ms~*. For the 60 seconds
between, the acceleration changes from +/ms~2 10 ~fms2. A model of the motion makes the
assumption that this change in acceleration is uniform with respect to time, so that the
aceeleration ams2 of the luggage, ¢ seconds after it starts to move, 60 < 1 < 120, is given by

JJ/I

a) Find, in terms of f, the maximum speed reached by the luggage.
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Given that the maximun speed

b) show that = 1.

©) Find the distance travelled by the luggage in the first 90 sconds for this value of /.
(EDEXCEL)

iched by the luggage is $4kmh~!,

Ganty

Sideview Gontol rope

A horizontal overhead gantry is used for unloading lorries. A light wire is wound round a
drum at A and is attached to a hook at B, which supports a load. A further rope attached to
the load may be pulled to help control its motion. The drum at A may be moved along the
gantry. The position vectors of points A and B are ry and ry respectively, where the unit of
length i the mer. i the aigin heuni vestor 1 i horizontal i the direcion OA and the
unit vector j is vertically downwards, as shown in the diagras

During lhc time interval 0 < 1 < 2.5, where 1 is the time in seconds, the motions of A and B are
modelled as

i) Find :xpmssmns for the velocity and acceleration of B at time 1.

) What is the direction of motion of B when ¢ = 1.5

Iv) By considering the acceleration of B, show that, fur some values of , the controlling rope
must exert a downward force on the load.
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Will you walk a it fuster?" said a whiting to a snail,
“There's a porpoise close behind us, and he's treading on my tail
LEWIS CARROLL.

Imagine that you are in a train. You roll a ball backwards down the carriage
1o friend at the other end of the carriage. Which way does the ball travel —
forwards or backwards’

From your point of view, it obviously travels backwards, but what would a
track-side observer conclude? This depends on the speed of the train and how
fast you roll the ball.

Case 1

Let us assume that the train is travelling at 1Sms~' and that you roll the ball
so that it takes 2 seconds o reach your friend. Let us also assume that it is.
20m from you to your friend.

You il he b

L
I

Your fend receives the bl

‘The ball takes 2 seconds to trael from you to your friend. Suppose, when you
start the ball rolling, the track-side observer fixes your position at the point Y,
and that of your friend at the point Fy 20m away. Then, 2 seconds later, the
observer would fix your position at the point Y and your friend's at the point
F2, both of you having travelled 30m.

‘The ball, which started at the point Y1, finishes at the point Fy. It thercfore has
travelled a total distance of 10m forwards, according to the observer. Since this.

00k 2 seconds, he would say that the velocity of the ballis Sms~" forwards,
Case 2

Let us assume that the train is travelling at Sms™" and that you roll the ball in
the same way
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‘Vou ol the bl
o ] Do ot i
om
1 2m o
o
Displacement of bl

e

‘The ball again takes 2 seconds to travel from you to your friend. Suppose,
when you start the ball rolling, the observer fixes your position at the point Y,
and that of your friend at the point Fy. Then as before, 2 seconds later, the
observer would fix your position at the point Y; and your friend’s at the point
F2, both of you having travelled 10m.

‘The ball, which started at the point Y, again finishes at the point Fy. It
therefore has travelled a total distance of 10m backwards, according to the
observer. Since this took 2 seconds, he would say that the velocity of the ballis
Sms! backwards

‘Thus, according to the observer, the velocity of the ball has changed, but
according to you and your friend, it is exactly the same as before. You would say
Ut the bl b eaveled backwards 20m in 2 seconds, & speed of 10m s

‘The example of the ball and the train llustrates a general principle. Every
‘observer measures velocity relative o some frame of reference in which the
observer is stationary, hence the term relative velocity. In the example, the train
provided the frame of reference for you and your friend. The frame of
reference for the track-side observer was the Earth.

Almost all the velocities you encounter are relative to the surface of the Earth.
‘When thisis the case, we do not use the term ‘relative’, allhcngh itisimplicd.
However, to the Earth, as

10 cach ather, we nod 1 bt clar what frame ofrferenc s being used.

In the same way, displacement is measured relative (0 a frame of reference. Tn
the example, you and your friend measured the displacement of the ball as
20m backwards relative to the train. The track-side observer measured the
ball's displacement as 10m forwards in Case 1, and 10m backwards in Case 2,
relative (o the Earth. Strictly, we should, therefore, talk about relative

isplacement, although in cases where all the displacements are relative to the
Earth we do not bother to state this explicily.
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Notation
‘We use the following notation:

Ava = Velocity of A relative to B

Ars = Displacement of A relative to B

Let us now examine the ball-on-the-train situation using this notation, and
find the relationship between the velocities inve

We have

Vcloclly of l.he train relative to the Earth v
ball relative to the train  gvy
V:chlly ofbe bl eltve 1o he Earth e

which give

e =15ms™ gvp=—10ms™! v =Sms!

e=5ms” gvp=-10ms™ gvg = -Sms!
Itis evident that in each case
v = Ve 1%

“This llustrates a general relationship between relative velocity vectors:
avc = AVU
=

Notice the order of the references. This will help you to remember the

relations!

To show that the relationship holds in general, consider observers on two
vehicles, A as ng relative to a poi velocities yvc and gvc
respectively.

B

To the observer on B, B appears to be stationary and A to be moving with

velocity Avy. This is equivalent to adding velocity vector ~gvc to the whole

system so that B becomes sta A now moves with velocity given by the
or sum of Avc and —y¥c, as shown in the right hand diagram on page 147.
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This gives s
AVD = AYe — w¥e

= AYC=AveFa¥C

as was stated on page 146.
e

Notice, in particular, that if A and B have velocities Ave and ave relative 1o the

Earth, then

AV = AVE~BVE
However, as we rarcly refer explicitly to velocity relative to the Earth, we
would more usually label the velocities of A and B as v and vy respectively,
giving

AVB= VA~ Vn

Solving relative velocity problems

There are three possible approaches we can use when solving relative velocity
problems:*

e Use a scale drawing of the velocity triangle (in practice this is rarely done).
 Use trigonometry to solve the velocity triangle.

 Combine the velocity vectors in component form.

Whichever method you use, you should always first sketch the situation. This.
often involves two diagrams: a space diagram to show the physical situation,
and a vector diagram to show the velocities.

Current and wind effects

You have met similar problems on pages 13-15. Examples | and 2 illustratc
them in the context of the relative velocity notation.

Example 1 A canoc, which can be paddled at 4ms™" in still water, is
launched on a river flowing at 3ms-!. The river is 24m wide. We make
the modelling assumption that the flow of the river s the same at every
point across its width,

o) I the canoe i seered direcly across the river, where on the far bank
will it land?

5 In which diection must it be steered to land direcly opposie its
starting point?
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souman
We solve the problem in two ways: first, by solving the velocity triangle
trigonometrically; second, by expressing the vectors in component form.
Method 1

&) The velocity of the canoe relative to the water, cvy = 4ms~!
perpendicular to the bank.

‘The velocity of the water relative to the bank, wva = 3ms™" parallel to
the bank.

We need to find cvy.

The relationship cvy Wi gives the -
seor trangle shown on the nghl From this I %
triangle, we have

tanf == Pt o

From the dlagmm of the river (space
diagram), we see that

om0 Vot dogrn
2 B
5 a2y =
tan0
So, the canoe lands at a point 18m 24m

downstream from its starting point.
o

Rearbomk
Space dingram

b) We are given m= velocity of the canoe relative to the water,
a direction to be found.
know the velocity of the water relative to the bank, wvp = 3ms '
parallel to the bank.
The velocity of the canoe relative to the bank, cvg, must be
perpendicular to the bank.

Using cv = v -+ wa, we get the
veclor triangle shown on the right. T
From this triangle, we have
cosp=2 = ¢=4141° amit
“The canoe lands directly opposte its 2

starting point f it sets a course upstream  Velocy disgram
at an angle of 41.41° to the river bank.




SOLVING RELATIVE VELOCITY PROBLEMS

Method 2
) Taking unit vectors as shown in the
diagram, we have

cvw=4f and wv=

24m) .
Using cv = eV + wh, we get

‘Space diagram

where tan

From the diagram of the river, we have

2
x=to
anf = e’

So, the canoe lands at a point 18 m downstream from its starting point.

b) Tnkmg unit vectors as shown in the
diagram, we have

v = —dcosgi+dsin ]

3i

Using cvg = cvi + wy, We obtain

v

—4cosgi+dsingj+3i
(~4c0s +3)i+4sin g
components, we have
~4cos¢+3=0

= c0s6=075 = ¢

‘The canoe lands directly opposite its starting point if it sets a course
upstream at an angle of 41.41° 1o the river bank.

Comparing i

141°

Example 2 An aircraft can fly at 200km h~" in sill air. The pilot wishes

10 set a course 5o that he can fly from town A (0 town B, which is 500km

from A on a bearing of 030°. There is a wind blowing from the south-cast

ata speed of 40kmh-1.

) What course should the pilot set?

b) How long will it take 1o travel from A to B?

) What course should he set for the return journey and how long will it
take?
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soumon

‘We solve the problem in two ways: first, by solving the velocity triangle
trigonometrically; second, by expressing the vectors in component form.

Note the following:

 The velocity of the aircraft relative to the
of this is often called its air speed.

 The wind velocity is the velocity om.c air relative to the ground, x¥.

« The velocity of the arcraft reltiv to the ground is . The magnitude
of this is often called its ground |peed

s p¥a. The magnitude

Method 1

2) We know the following:

00kmh~! in some dlrccuon m be determined
AV = 40km h™! from the south-ea

#¥G is on a bearing of 030° with mnglﬂ[\ldh X, tobe
determin

The relation pvG = p¥x + a¥G gives the velocity triangle shown.
We require the angle 0, which we can find using the
sine rule:

-
200

= sing =0T g 103y
200

= 0=111

or 16886

As the second solution is not valid in this case, the
course the pilot should set is

030° 4 11147 = 041.14° Velocty disgram

b) To find how long the journey will take, we need to find the magnitude
of ¥, represented by the length x in the velocity diagram.

“The third angle in the triangle is
180° — (757 + 11.14°) = 93.86°

We can now use the sine rule

X m
§n9386  sin7s°
oy = 2009386 46 59kt
Sin7s”
So, the journey will take %0 = 2421 (2h 25 min) to complete.
20659
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o n\: dmgnnn for the return journey is shown on the right.
that this triangle is not congrucnt to the previous onc.

‘We again use the sine rule to find the bearing of pva:
ng _ sin 105
40 200
= sing = 2081054 13
= ¢=10114" or 168.86"

Ag:
So, the required bearing is

180° + (30° ~ 11.14°) = 198.86°
To find how long the return journey takes, we need to find

the magnitude of p¥c. represented by the length  in the
velocity diagram.

. the second value is not a valid solution.

‘The third angle of the triangle is
180° — (105° + 11.14°) = 63.86°

We can now use the sine rule:

6386°  sin105

185.88kmh™!

So, the return journey will take =2.69h (2h 41 min) 10

|xsxx
complete.

Method 2

Note This approach requires the solution of trigonometric cquations of

the form acos x + bsin x = c. If you have not encountered this, you may

wish 10 skip what follows.

a) Putting [y | = v and taking unit vectors as shown in
the diagram, we have
#% = 200c050i + 2005in 0§
—40c0s45° i + 40sinds §
20121+ 20V2j

G = vsin30° i+ vcos30°
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Using ¥ = p¥a + AV, We have

(200050~ 20V2 )i + (200sin 0 + 20v2)

Comparing components, we have
200cos 0 — 20v2 m

and 005in 0 +20v2 @

From [1] and [2], we obtain
V3(200¢050 - 2072
Dividing through by 20 and rearranging, we get
10V3cos0 - 10sin0 = V2 + V6
Rewriting the left-hand side in the form Rcos (0 + a), we get
20c0s(6+30°) = V2 + V6
=0.1932

= 200sin6 +20v2

= cos(0+307)
= 0+30°=T886° = 0=4886

‘The course the pilot should set is, therefore,
90° — 48.86° = 041.14°

b) Substituting for 0in [1], we have

2 =200c0s48.86° 20V = v=206.59kmh'

2
. " 500
So, the il take
o, the journey will take 2%

42h (2h 25 min) to complete.

©) Putting |pvG | = ¥ and taking unit vectors as shown, we obtain

YA = ~200sin i — 20005
Vo = —40c0545° i + 40sin45° §
=-20V2i+20V2j

WG = —Veos60° i — Vsin60° §
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Comparing components, we have
2005in  + 2072 [E]

and 20005~ 20v2 0]

From [3] and [4], we have
V3(2005in ¢ + 20V2) = 200cos ¢ — 20v2
2 through by 20 and rearranging, we get
10cos$— 10V3sing = V2+ V6
Revriting the lefi-hand side in the form Rcos (0 + ), we get
2cos (9 +60°) = VI+ V6
= cos(¢+60°) = 0.1932
= 60 =T886
= ¢=1886"

The course the pilot should set i, therefore,
180° + 18.86 198.86°
in (3], we have

Substituting for

¥ - 200sin 1886+ 20VE = V= 185 88kmh!

So, the eturn journey will ake 100

69h (2h 41 min) to

complete.

Example 3 Two fish, Angel and Barb, pass close to cach other. In

relation to a fixed frame of reference, they have velocities
i+j—k)ms™ and vg = (~i +2j+ 2k)ms~' respectively. From

‘Angel' point of view, how fast does Barb appear (o be moving?

We need to find [yva |
We use the relationship ¥ = ¥ — va. which gives
WA= j+3k
= el =V P+ F=436ms™

So Barb appears to Angel to be moving at 4.36m s~

PROBLEMS
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Exercise 8A

1 A ferry can travel at 10ms~" in stll water. It is crossing a river that is 40m wide.

a) If the river is flowing at 6ms~" parallel (o the banks and the ferry steers perpendicular to
them, how far downstream from its starting point will it drift?

b) IF the river is flowing at 6ms~' parallel to the banks, at what angle to the near bank should
he boat be stecred in order to cross the river to reach a point on the far bank directly

ite the starting point? How long does the crossing take?

0 Tth iver’s Mowing o 12ms-1can the oy each the poin diretly opposite it starting point?

@) If the river i flowing at 12ms-! and the ferry steers upstream at an angle of 30° to the near
bank, how far downstream does it drift before reaching the opposite bank

2 Tn order to travel due north at 25kmh~", a s
a course of 320°. At what speed

with a cru
e current Roving?

g speed of 20kmh~" has to steer

3 Rain is falling with a speed of 24ms~". It is being blown by a wind so that it appears to be
falling at an angle of 67.38° to the ground. What is the speed of the wind?

4 A power boat has a cruising speed of 60kmh-. It is taking part in a race around three buoys
arranged in an equilateral triangle. The second buoy. B, is 5 km due east of the starting/
finishing buoy, A. The third buoy, C, is to the north of the line joining A and B. There is a
current flowing at 10km h-" from the south-west. In what direction should be boat be sicered
on each leg of the race and how long will it take the boat to complete one circuit?

5 Microlight aircraft A and B pass each other. A, which has speed of S5kmh !, is travelling on a
bearing of 040° and climbing at an angle of 20° to the horizontal. B, which has speed of 70kmh~",
is travelling on a bearing of 110° and descending at an angle of 25° to the horizontal,

) Taking cast, north and upwards as the I-, - and k-directions respectively, express the
Velocities of the two aircraft in component form. Hence find in the component form the
velocity of A relative to B,

) From B's point of view, what are A’s apparent speed and angle of ascen(?

Example 4 To a cyclist travelling east along a straight road at a speed of
15kmh-!, the wind appears to be coming from the dircction 120°. When

she increases her speed 1o 20km h~", the wind appears (o be coming from
the direction 110°, What i the true velocity of the wind?

e v is 1Skmh! due east.
an unknown speed.

ind wic has a direction from 1207 but

We need to find w¥g. the velocity of the wind relative to the ground.
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Using w¥o = wc + ¥, We obtain Diagram 1. ve1skmi
Disgeam 1

Second part
We have cvg is 20kmh~! due east, and wyc v i
has a direction from 110° but an unknown speed.  ~<
Again using w¥G = w¥c + c¥o, we obtain
Diagram 2. - o
In these two dingrams, wvg is the same and Dagram2
50 we can superimpose the two diagrams to
give Diagram 3,
We obtain the velocity of the wind by drawing Skt 15kmi

p & <
Diagram 3 to scale and measuring it, or by ~
calculating it using trigonometry.
In triangle ABD, ADB = 10°. So, using the sinc

Disgram 3

rule, we have o

In triangle BCD, using the cosine rule, we have

9.8482 4 157 — 2 x 9.848 x 15 x cos 30°

lwve |
= lwal=8132

And, using the sine rule, we get

= 0=3727

The velocity of the wind is, therefore, 8.13kmh~' from a direction whose
bearing is 232.73", It is blowing towards the direction whose bearing is 52.73°.
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Interception, collision and closest approach

The English Channel between Dover and Calais is one of the busiest shipping
routes in the world. Ships travelling north-cast are separated from those
travelling south-west by two ‘lanes’ marked on navigation charts. However, the
routes of cross-channel ferries cut across these lanes, leading 1o the possibility
of collisions.

If you are aboard a ship and trying to decide how close to you a second ship
will come, it is necessary to find the velocity of the second vessel relative to
you, Effectively, you imagine that you are stationary and plot the relative
course of the other vessel. This will indicate whether there will be a collision
o, if not, how close the ships will be when they pass each other.

Example 5 A ferry is travelling due south at 15 knots. (A knot is one
‘nautical mile per hour, where one nautical 1.852km). The captain
notices a tanker, initially 5 nautical miles away and on a bearing of 210
from the ferry. The tanker signals that it is travelling duc east at 10 knots.
Will the two ships collide if they do not take avoiding action? If they are
not on a collision course, how far apart will they be at their closest point?
(Make the modelling assumption that any wind or current affects both
vessels equally and so can be ignored.)

soumon
Using the subscripts E, F and T to stand for Earth, ferry and tanker
respectively, we have

10 knots due east

15 knots due south

We need to find the direction of rv.

We sketch a space diagram showing the initial positions, F and T,
of the ferry and the tanker.

The relative velocities are conneeted by the relationship

TV =TV

“This leads to the velocity diagram on the right.

From this triangle, we have

tand -
s
“The direction of 1¥ is a bearing of 033.7°
10k
Velocydigram
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o the captain of the ferry, the fery appears stationary and
the tankerappears 0 be raveling on 3 bearing o 035.7

now superimpose this relative course on the space
diagram as the line TS.

“This indicates that the vessels will not collide. Since the ferry
is actually travelling south, the tanker will pass in front of it.
‘The shortest distance between the vessels is the perpendicular
distance, d, from F to the line TS.

We calculate d from the triangle shown below right:

d=5sin3.7° = 0.322 66 nautical miles

The vessels pass within 0.
of each other.

2 66 nautical miles (about 600m) ¥

T Not o scale

Example 6 The captain of a patrol boat, capable of a speed of SOkmh~",
spots a smuggler’s craft 800m away on a bearing of 060°. Radar indicates
that the smuggler’s craft is travelling at 30kmh~! due west. Assuming
there is no current flowing, what course should the patrol boat's captain
set in order to intercept the smuggler in the shortest possible time? How
Tong before they meet?

sownon

Using the subscripts P, § and W to stand for patrol, smuggler and water
respectively, we have

svw = 30kmh~! due west .
¥ | = S0kmh~!

In order 1o intercept the smuggler’s craft, the of svp
must be 240°. This is because the smuggler’s craft must appear,

to someone on the patrol boat, to be coming straight towards

them. N

We need to find the dircction of pyw. We also need |svp| in order
to find the time ta}

‘We sketch a space diagram showing the initial positions, P and S,
of the patrol boat and the smuggler's craft. Souce dagram
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The relative velocities are connected by the relationship
stw = svp + v

‘This leads to the velocity diagram on the right.

ok

Using the sine rule, we obtain

03

05in30° _
50

Velachy disgram.

= 0=1746 or 16254

In this case, the second value does not give a viable triangle. The course
that the patrol needs 10 set is therefore on a bearing of

0607 — 17.46° = 042.54°
To find | svp |, labelled v in the diagram, we use the sine rule again.

‘The third angle in the triangle is

180° ~ (30° + 17.46°) = 132.54°
which gives
Sin 132,54

73.68kmh™!

08

“This gives an interception time of

T35 = 00I086h=3915 (10 1dp)

Note If the speed of the patrol boat had been less than 30kmh-!, both values
of 0 would have given viable triangles. This is illustrated in Example 7. There
are also situations in which the pursuing vessel is unable to catch its quarry.

In such a situation, it is impossible to draw the velocity triangle.

Example 7 A motor boat is travelli ced of 16kmh~". A rower,

who can row at 10kmh~!, wishes (0 intercept the motor boat. Initially,

the rower is 500m from the motor boat on a bearing of 120°.

a) If the motor boat is travelling due cast, which dircction should the
rower take in order to intercept it? Find the corresponding travel

time.
&) If the motor boat is travelling due south, can the rower intercept it?
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) Using subscripts M, R and W for the motor boat, the rower and the
ter respectively, we have

v = 16kmh! due east

10kmh~"

Trvw
If the rower is to inerept the motor boat, the direction of yve must
beca otor boat must appear to the rower to be
ravellng saight owarde her.

We need to find the direction of vy N

We draw a space diagram to show the initial positions, M

and R, of the motor hoat and the rower Q™
“The relative velocities are connected by the relationship
MV = osia
When we sketch the velocity diagram. we find that Spacediagram H

there are two possible triangles, ABC, and ABC,,

which fit the facts, as shown on the right. This is

because, having drawn the line AB representing
MY, an are of radius 10 centred on B cuts

the desired direction of yvy in two places, C;

and

Using the sine rule, we have

sind _sin30°

16 10 Velocty diagram

= sing= 1680307 o
10

= 0=5313 or 12687
‘This time, cach value is a valid solution to the problem.

o, there are two possible directions for the rower to take: namely, a
mnng of 353.13° or of 066,87

T find the travel times, we need to find the possible values of | yvi |,
which are given by the lengths AC, and AC; in the velocity diagram.

For triangle ABC;, the third angle is 180° - (30° + 53.13°) = 96.87°
For triangle ABC;, the third angle is 180° — (30° + 126.87) = 23.13°
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Using the sine rule for triangle ABC;, we have

105in96.87°

5 9.86kmh~"
sin30°

Using the sine rule for triangle ABCy, we have

AG _ 10

Sn2F 300

= AC = B g gsimp-t
Sin30"

The first course gives an interception time of

03 0.02518h = Imin3l's
19386
The second course gives an interception time of
05 00636k = 3mind9s
7.856

Notice that these caleulations give the possible courses for interception, in

which the motor boat and the rower arrive at the same point at the same.
. If the rower were 10 sct any course between the two, she could reach

4 point on the motor boat’s course, and then sit and wait for it to arrive.

b) The details here are exactly the same as for part a,
‘except that the motor boat is now travelling south.

When we try to draw the velocity diagram, we find
that there is no triangle which fits the facts. This is
because, having drawn the line AB representing
¥w, an arc of radius 10 centred on B does not cut
the desired direction of va.

i, therefore, impossbe o the rawer 0 intercept
the motor bo:

Itis possible to solve problems of interception and closest approach by
using veetors in component form, as in Examples 8 and 9.

Example 8 Two flies, Buz and Nat, have posi rs
T i |m+ 10j — 7K respectively. Thty are flying

—2j+3kand vx
ctively. Show that, i ey alter courseor specd. they wilcllde.
Find the position vector of the point where they meet.
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soumon
‘The displacement of Nat relative to Buz is
Tp = I — 1y = 8+ 16 — 16k
‘The velocity of Nat relative to Buz is
NV =W~ Wy = ~2i ~ 4j + 4K

We can sce that

R
As the multpler here i negative, xvy is in exactly the opposite dircction
10 xp. S0, from Buz’s point of view. Nat appears to be heading straight

towards him. They will thercfore collide.

As [ v | = 4] xra . the collision will happen after 4s.
In this time, Buz will have moved to the point with position vector
(20~ 6] +9K) +4(i - 2 + 3K) = 6i  14] 4 21k

Similarly, Nat will have moved o the point with position vector
(10§ + 1] 7K) + 4= — 6]+ 7K) =

i~ 14)+ 21k

and so this s the point where they meet.

Example 9 Two birds, A and B, are initially at points with position
vectors (51 + 8+ 12k)m and (2i - 4] + 15k)m respectively. They are
fiying with constant velocities of (2 +]+3k)ms' and (i +2j+ 2k)ms~*
respectively. Find the time at which they are closest together, and the
distance that then separates them.

souwnon

After ¢ seconds, bird A has a displacement of 1(2i + § + 3K) from its initial

position. Hence, after ¢ seconds, bird A is at the point with position vector
£y = (514 8]+ 12K) + 1(2i + [+ 3K)

Similarly,

3+ 0i+(12 = 0+ (1 = Ik
B+ (207 + (-3
=32 244162 U]




CHAPTER 8 RELATIVE MOTION

The closest approach occurs when | arg |* is a minimum. So,
differentiating, we get

d(

For a minimum, we have
6i-24=0 = 1=4
So the birds are at their closest point after 4.
Substituting for ¢ in (1], we have
IarP=114 = ,rp=10.68

So, the minimum distance between the birds is 10.68m.

1 Two trains leave a station. One travels west along the straight somct
‘main linc at 50kmh~" and the other travels at 30kmh~" along
a branch line making an angle of 30° with the main linc, as >
shown. What is the velocity of the branch-line train relative to
the main-line train? s

2 A horse rider feels that the wind is blowing at 12kmh~" dircetly across her path from left to
right. If she is travelling from west to cast at 16km h™", what is the velocity of the wind?

3 A cyclist, travelling due north at 20km h~", fecls that the wind is coming from due west. When
travelling in the opposite direction at the same speed, the wind appears to be coming from a
bearing of 210°. What is the velocity of the wind?

4 A baseball player has just hit the ball, which is fielded by a member of the opposing team. The
fielder is at position ~9i -+ 12j, the bater being at the origin. The batter runs with a constant
velocity of 2i -+ 3j and the fielder throws the ball with a velocity of 5i — j. Assume that the ball
is not affected by gravity.

a) Show that the ball will hit the batter if he does not take avoiding action.
b) Where would the batter be if he were hit by the ball?

5 A boat, A, is 10km south of another boat, B. A is travelling at 24kmh~" due east, whilst B
can travel at 26 kmh~". What course should B set in order to intercept A and how long will it
take to do so?




6 A ferry, travelling at 35km b

Exencise 18

s about o cross a sea lane perpendicularly. It observes a
{anker n the lane traveling at 20 k- The tnker i 3K away rom the ferey n # dircton
‘making an angle of 35° with the direction of the ferry. Will the two ships collide? If not, how
far apart are the ships when they are at their point of closest approach?

A patrol boat, travelling at 40 kmh~! on a bearing of 030", sces a suspect craft travelling at
15kmh~! due north. It intercepts the craft 1 hour later. What was the position of the craft
relative to the patrol boat when it was first sighted?

An enemy aircraft, fyi
over a missil

g at a height of 1000m and at a speed of 600kmh~, passes directly

sile is fired at §00km ! to intercept the aircraft. Assuming that the
missile is not of the heat secking type and must travel in a straight linc, at what angle should
the missile be fired? How long would it take to it the plane?

A motor cyclist s travelling at a steady speed of 60 kmh~" due south along a straight road.
‘The wind appears to be blowing in a direction with bearing 040°. On her return journey, at the
same speed and with the same wind conditions, the wind appears to be blowing in a direction
with bearing 150°. What is the velocity of the wind?

Particles A and B start at points with position vectors (2i + j)m and (3i + 4j)m respectively.
They have constant velocities of (=i + 2j)ms~' and (pi + gj)ms™! respectively.
a) Show that, if the particles are to collide at some time after the start,
p<-lg<2 and g=3p+5
b) Show that,if the particles have their closest approach (o one another at some time after the
start, p +3g <
o If,

2, find the time taken for the particles to reach their point of closest
approach, and find the distance that then scparates them.

Particles A and B start at points with position vectors (16i + 3 +4K)m and (6] +2k)m
respectively. They have constant velocities of (i + 2j)ms™ and (2i —j — 2kyms ! respectively.
Find the time which elapses before the particles are at their point of closest approach, and find,
the distance which then separates them.




9 Friction

Ay, there’s the rub.
WILLIAM SHAKESPEARE.

S0 far, cither we have assumed that friction is negligible or we have talked
about ‘fictional resistance forces’ without discussing how they might be
modelled.

To get a feel for the problems of modtllmg frition, you should ideally do
e practical investigation along the ling riments 1 0 3.

some pr

Befor startng, tough, thre e hings we can easonably agree upon.

@ Friction occurs where we are sliding, or attempting to slide, one surface over
another in contact with it. (The word derives from the Latin fricare, which
means (o rub).

« Friction always tries to prevent movement. The direction of the friction

force is always o 10 that in which the object is moving or would
move if there were no friction.

o Friction is a passive force. That is, it happens as a response (0 an atiempt to
slide surfaces. A block placed on a table has no friction force acting on it
unless we try to push it along. When we push gently, the block stays still,
‘meaning that the friction force ‘adjusts’ to exactly match the applied force,
up 10 a limit beyond which the block starts to move.

We will investigate the simplest friction situation: a block sliding on a plane
surface.

You need a plank, string, some weights, a pulley and three blocks.

“Two of the blocks must be of the same material but their corresponding faces
‘must have different areas. (Or you could have one block with faces of dlﬂ:unl
areas.) The third block should have a markedly different type of surface: for
xample you might ry sicking sandpaper 1o . You ned 1 know the massof
each block.




e

The block plus some weights, total mass M, are placed on the horizontal
plank, and the block is connected to the suspended load, mass m, by means of
string passing over the pulley al the end of the plank, as shown. You assume
that the string is light and the pulley is smooth in comparison with the other
‘masses and forces involved., so that the tension T is the same throughout the
string. The contact forces between the block and the plank are the normal
reaction, R, and the friction force, F.

As the suspended mass, m, is increased, the friction increases to keep the block
stationary, until the point is reached where an increase in the load causes the

k to move. At this point, the friction force is at its maximum value, called
limiting friction.

For this experiment, you find the value of m wncspondmg to limiting friction
for ten different values of M. In practi y find it more satisfactory to
i the value af t and atr the value of A antlthe block i ust on the point
of sliding,

You find the values of F and R as follows.

Resolving vertically for the suspended mass gives T — mg =0
Resolving horizontally for the block gives F-T
from which you obtai

Resolving vertically for the block gives
from which you obtain

and interpretation

You analyse the results as a table showing F, R and the ratio F/R. You can
also draw a scatter graph of the various pairs of values and draw a line of best
fit. This can be done by hand, but if you have access to a spreadsheet you
can use the sheet FRIC 1 available on the Oxford University Press website
(http://www.oup.co.uk/mechanics). Aliernatively, if you have a graphics
caleulator with list functions, you can analyse the results more convenicntly.

‘The table on page 166 shows sample results for one run of the experiment. The
results you obtain should be similar and you will probably notice three things:

EXPERIMENTS
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* The valucs for 7 an approsimatly the same o iferentkoadings of
each particular block. This corresponds to a scatter graph with a convincing
hnm pattern and a line nl' best fit passing through, or near to, the origin (as

pected, because a block with zero mass would have zero friction).

 The two blocks of the same material but different areas have similar values
of F/R.

® The value of F/R changes for the block of different material

ass on block, M | Suspended mass, m | Reaction R | Friction F [ F

(kg to nearest 0.01) | (kg to nearest 0.01) | (uewtons) | (mewtons) | g
014 0.03 1372 0294 | 0214
0.19 0.04 1.862 0392 [ 0211
024 005 2352 0490 [ 0.208
029 006 2842 0.588 | 0.207
035 007 3430 0.686 | 0.200
041 0.08 4018 0.784 [ 0.195
046 0.9 4.508 0882 | 0.196
051 0.10 499 0.980 [ 0.19
036 o011 5488 1078 | 0196
0.60 0.12 5.880 1176 | 0200

Frction, F(%,
g

3 T
Resction, R(N)
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Experiment | suggests that the friction force depends on the
reaction between the surfaces. However, as R was given by
Mg, it could be that the friction depends on the mass. To
test this, you re-run the experiment using only one of the
blocks but with the plank inclined at an angle x to the
horizontal, s0 that R is no longer equal to Mg.

You find the values of Fand R as follows.

Resolving vertically for the suspended mass gives T —mg =0
Resolving in the i-direction for the block gives T~ F— Mgsina
from which you obtain F=mg - Mgsina
Resolving in the j-direction for the block gives R — Mgcosz =0
from which you obtain R=Mgcosa

Analysis and interpretation

Once again, you tabulate the values of £, R and F/R and draw a scatter graph.
Spreadsheet FRIC?2 (also available at http://www.oup.co.uk/mechanics) may
be used for this purpose.

The table shows sample results for this experiment, using « = 30°.

Mass on block, M | Suspended mass, m | Reaction R | Friction F | F.

(kg to nearest 0.01) | (kg to nearest 0.01) | (newtons) | (newtons) | R
o 0.07 0934 0147 [ 0.157
012 0.08 1018 0.196 | 0.192
014 0.09 1188 0196 | 0.165
0.15 0.10 1273 0245 [ 0.192
016 o1 1358 0294 [ 0217
0.18 0.2 1.528 0294 [ 0.192
0.20 0.13 1.697 0294 [ 0173
021 0.14 1782 0343 | 0192
0.23 0.5 1952 0343 [ 0176
024 0.16 2037 0392 | 0192
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Friction, £ (%)
&

s
Reacaon, ROY)

You should find that the value of F/R remains approximately constant, as
before, and that this constant valuc is similar to that obtained when the plank
is horizontal. This shows that it is the reaction between the surfuces, rather
than the mass of the object, which determines the friction.

Coefficient of friction

Let us now summarise the resuls so far.

* When we r 1 move the block by applyng an incrasing ore, the Ficton
force increases 1o exactly match the applied fore up to a maximum, called
the Ilmlljng friction, and the system is then said to be in limiting equilibrium.
Applying a force greater ﬂ\an this causes the block to move.

 The value of limiting friction depends on the nature of the surfaces in
contact but s independent of the area of contact.

« Fora given pair of surfuces, the ratio between the limiting friction and the
normal reaction is constant. This constant is called the coefficient of friction
for the surfaces and is denoted by . As the friction force can never be
greater than the limiting friction, we have

F
Z<u or FSpR
RSH or Fsu

You can try to confirm your value for the coefTicient of friction between your
blocks and plank by taking a different approach.
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Place one of the plank and the plank until
e block just starts to move, Measure the angle of inclination of the plank. (You
may, in practice,find i casier to measure the length of the plank and the height to
‘which the end is raised, using these to find the sine of the required angle.)

riction is now direeted up the slope 10 try to stop the block X
sliding down, as shown
N

Suppose the block is on the point of moving when the angle s .

Resolving parallel to the slope gives you

F- Mgsinz =0 m
Resolving perpendicular to the slope gives you

R— Mgcosa =0 @
From [1], you have: F= Mgsina Bl
and from [2), you have: R = Mgcosx “

Dividing [3] by [4] gives you

= =tanz
R cosz

But F/R = . the coeflicient of friction, 5o

ill need (o repeat the process several times and average your results
in a reasonable value for z and thercfore for s

Using our block on a 39cm plank, we obtained heights (1o the nearest 0.5) of
8.5cm, 7.5¢m, $em, 9.5cm and 8.5cm, giving an average height of 8.4cm and
an angle of 12.4°. This estimates the coefficient of friction as

H=tan124" =022

Note Do not worry if in these experiments you obtain results which vary
quite widely. It is notoriously difficult to get accurate measurements of friction
using simple apparatus. The best you can hope for is to get a general feel for
the way friction behaves.

Static and dynamic friction

In Experiments 1 to 3, you were dealing with static friction. That is, the friction
available to hold the object stationary. You may have noticed that, once the block
started to move, it tended to accelerate, which would indicate that the force exerted
by friction when the block is moving is less than that exerted when it is still
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When you place your block on the plank and raise the end until the block is
close to moving, a slight nudge will get it started, and once it is moving it will
continue to do so.

“The friction force operating between two moving surfaces is called dynamic (or
Kinetic) friction, which is usually slightly less than the static friction between
those surfaces. Dynamic friction is also encountered in situations where two
surfuces in relative motion are brought into contact: for example, when the
brakes of a car are applied. For our purposes, we usually make the modelling
assumption that the coeflicients of static and dynamic friction are equal, but
you should be aware that the difference can have a significant effect on
experimental results.

s possible to show experimentally that the ratio F/R for dynamic friction is
approsmatlyconstant and s adepedent o e sped. This o i called the
coefficient of

It should be noted that the situation is markedly different when the surfaces
are lubricated. When there is a film of oil between the surfaces, /R varies in
proportion to speed.

Example 1 A block of mass 4 kg rests on a rough horizontal surface. The
coeflicient of friction between the block and the surface is 0.35. A
horizontal force P is applied to the block so that it is just on the point of
moving. Find the value of P.

sowumon
Resolving in the i-direction, we get

P-F=0 0]
Resolving in the jrdirection, we get

R-4g=0 2

As friction is limiting, we have

F_o3s = F=o03sr 6]
®

Substituting from (2] into [3], we have
F=035x4g=1372N
And 5o from [1] we get P = 13.72N.

Example 2 Using the same block and surface as in Example 1, we now
apply the force P at an angle of 20° to the horizontal. Find the value of P
when the block s about to move.
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soumon
Resolving in the i-direction, we get

Pcos20° - F- U]
Resolving in the j-direction, we get

R+ Psin20° —4g =0 @
As fiiction is limiting, we have

F=035R Bl

From [2] and [3]. we obtain

F=035(4g - Psin20°)
Substituting in [1], we have

Pcos20° = 0.35(4g — Psin20°)

035 x4g
05207 +0.35 x 5in 20°

= P

mple 3 A block of mass m is on a rough plane inclined at 30° to the
Rorsanta The ccficientaf iction between the block and the plane is

1. A horizontal force P acts on the block. y s sufficiently small for the
Hioek o sde down the slope if P does not act. he range of possible
values of 2 if the block remains stationary.

soumon
“The block moves in one of two ways:

a) If P is oo small, the block slides down the slope.
b) If P is too large, the block slides up the slope.

a) Suppose the block is in limiting friction and about to slide down the
slope. The friction force is dirceted up the slope to oppose this.

Limiting friction means

F=uR m

Resolving in the i-direction, we get N
F+ Pcos30° — mgsin30° @

Resolving in the j-direction, we get
R~ Psin30° — mgcos 30° = 0 6]

Substituting from [1] into [2] and doubling both sides, we obtain
2R+ PV3—mg =0 “
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Doubling both sides of 3], we have
2R-P+mgV/3=0 5]
Multiplying [5] by 4 and then subtracting it from [4], we get

P+ V)~ mg(l + py/3) =

o porelin/d)
TV
b) ppose the block i in limi and about p the slope.
The frict i i the slope
Resolving as before, we obtain
Peos30° - F— mgsin30° = 0 m
R~ Psin30° ~ mgcos 30° =0 [E]
ting F = iR and doubling as before, we get
PV3-2uR-mg=0 £}
2R-P-mgV/3=0 @

Multiplying (4] by jt and then ad
P53 = ) — mg(l +u3) =0
mg(1 +pv/3)

gt 10 [3], we get

= ~Ei-p
So, the range of values of P is
mg(1 + w3 mg(l + py/3)
MSLEENT) « pg MECTIVI)
+V3) W3-n

Exercise 9A

1 Each of the following diagrams shows a block of mass 5kg resting on a rough horizontal
surface. If the block is in limiting equilibrium, find the coefficient of friction.

a) g

SN
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2 Each of the following diagrams shows a block of mass § kg resting on a rough horizontal
surface. IF the block is in limiting equilibrium and the coefficient of friction is as stated, find
the force P.

N

3 A block of mass Skg rests in limiting equilibrium on a rough plane inclined at 27° to the
horizontal. Find the magnitude of the friction force acting on the block and the coeflicient of
friction between the block and the plane.

4 A block of mass m rests in limiting equilibrium on a rough planc inclined at an angle  to the
horizontal. Show that the coefficient of friction between the block and the plane is tana.

5 A block of mass 4kg rests on a rough planc inclined at 10° to the horizontal. The cocflicient of
friction between the block and the plane is 0.3. A force P acts on the block parallel to the
plane. Find the magnitude and direction of 2 if the block is about to move a) up the plane,

b) down the plane.

& A block of mass 6kg rests in limiting equilibrium on a rough planc inclined at 20° to the
horizontal. Find the horizontal force which would have to be applied to the block to cause it to
be on the point of sliding up the plane.

7 An object of mass 50 kg rests on a rough planc inclined at an angle  to the horizontal. It is
supported in this position by a light string parallel to the plane which is attached to the object
and fixed to a point at the top of the plane. The string has a breaking strain of 200N, and the
coefficient of friction between the object and the planc is 0.2. Find the largest value of & for the
string to remain intact.
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inclined to the horizontal at 40 The blocks are connected
by means of a light string passing over a smooth pulley at
the top of the slopes. The coeffcient of friction at each

lock is . I the blocks have masses of 10kg and 4 kg and
the system is in limiting equilibrium, find the value of .

8 The diagram shows two blocks resting on rough planes /-\

9 The diagram shows a block of mass km resting on a rough
horizontal table. It is connected by means of a light string
pmng over a smooth pulley at the edge of the table to

cle off mass m. This particle is acted upon by

Rorisomal fore P s that the sing i inclined t an angle

010 the vertical. If the coeflicient of friction between the block

and the tabl s and the sysem s in Ilmxung equilibrium, show that

1
0= —
cos0 =
and find P in terms of k, m and p.

10 The diagram shows particles of mass 2kg and 1 kg placed
ona fixed double inclined plane with inclinations of 60°
and 30° respectively. The particles are connected by a
light string passing over a smooth pulley at the vertex.
The coeflicient of friction between the particles and the
planes is 4. Show that if the hww particle is on the
point of slipping then s = 5v/3 —

11 A block of mass m rests on a rough plane inclined at an angle « to the hmlznnnl A force Py
acting up the plane causes the block to be on the point of moving in that direction. A force Py
'|clmg down the plane causes the block to be on the point of moving in that inesion Show

— Py is independent of the coeflicient of friction between the block and the plane.

2 -nn diagram shows p.lrlu:lcs of mass m and km (where
k> 1) resting on a double d plane with each part
inclined at 3 o the horizontal. The coeficient of Fition
on cach planc is jt. The particles are connected by a light
string passing over a smooth pulley at the vertex. If the
system is about to move, show that

+uv3
1-u/3

What does this tell you about the value of u?

k=

@

A particle of mass 71 can just rest on a rough plane inclined at 30° to the horizontal without
slipping down. Show that the least horizontal force needed to maintain its position if the
inclination is increased to 45° is mg(2 — v/3).
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14 Two rough rings, cach of mass , are threaded onto a horizontal rod, the coefficient ur rncuon
between the rings and the rod being 1. Two light strings, each of length a, connect the rings to
a partice of mase m which hangs redy below the rod. Show that the masimum distance
between the rings on the rod for equilibrium 10 be maintained is

6
/o +1

5 The diagram shows a block of mass kn resting on a rough
horizontal table, the coefficient of friction being . A light
string attached to the block passes over a smooth pulley at
4 hole in the table and its other end is fixed 10 a point on
the underside of the table. A smooth ring of mass m is

threaded on the string. Find the minimum value of p for
equilibrium to be possible i thesriog through the ring ns
inclined at 30° to the vert

Situations involving acceleration

In Examples 4 0 6, the coefficient of friction, , i assumed to be that for
dynamic friction.

Example 4 A block of mass 5 kg moves on a rough horizontal plane with
coefficient of (dynamic) friction 0.2 under the action of a horizontal force
of 30N_ If the block starts from rest, find the distance it travels in the first
3 seconds of motion.

Let the block have accelera

ion a.
From the laws of friction, we have
F=02R m

Applying Newton’s laws and resolving, we obtain:
o @
In the i-direction: 30~ F=5a B

In the jrdirection: R - 5

Substituting from [2] into [1], we have
F=02x5g=98N
Substituting i 3}, we get

202=5a = a=404ms?
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Using s = ut + Lar®, where u =0, ¢ = 35 and a = 4.04ms~%, we obtain

1x404%9=1818m

So, the block travels 18.18m in the first 35 of motion.

Example 5 A particle of mass 6kg, moving at 8ms' on a smooth
horizontal surface, goes onto a rough horizontal surface with a coefficient
of friction 0.25. Find the distance it moves across the rough surface before
coming 1o rest.

soumon

Let the particle have acceleration a.
From the laws of friction, we have

F=025R U]

Applying Newton’s laws and resolving, we obtain
n: R—6g=0 &l
ba Bl

Substituting from [2] into [1], we get

In the j-dire

In the i-direction:

F=025x6g= 147N

Substituting in (3], we get

—147=6a = a=-245ms?

Using v = i + 2as, where u = 8ms~', v = 0 and a = ~2.45ms~?, we

ol

So, the particle travels a distance of 13.06m across the rough surface.

Example 6 The diagram shows a small block of
mass 2kg able to move on a rough planc of length
8m inclined at 20° to the horizontal. The block is
attached by means of a light string passing over a
smooth pulley at the top of the plane to a particle
of mass Sk hanging freely. The coefficient of
friction between the block and the planc is 0.2.

‘The system is released from rest with the block at
the bottom of the plane. Find the time which elapses
before it reaches the top.
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From the laws of friction, we have

F=02R m
Resolving vertically for the suspended particle, we get

Sg-T=5a &}
Resolving perpendicular to the plane for the block, we get

R—2gc0s20° =0 Bl
Resolving parallel to the plane for the block, we get

T~ F-2gsin20° =2a ]
Adding [2] and [4], we obtain

Sg—~2gsin20° ~ F=Ta £}
Substituting from [3] into [1], we have

F=0.2x 2gcos 20° = 3.684 N

Substituting in [3), we have

86l=7a = 552ms?
Using s = ur +ar?, where s = 8m, u = 0 and a = 5.52ms"%, we obtain
s={xss2xr
= 1=17s

So, the block reaches the top of the planc in 1.7s.

Exercise 9B

4 A block of mass 3kg s being towed across 4 horizontal surface with coefficient of friction 0.2
by a horizontal force of 18N. Find the acceleration of the block.

2 A block of mass Skg is being towed across a horizontal surface with coefficient of friction by
@ horizontal force of 40 N. If the acceleration of the block is Sms~2, find the value of ji.

3 A block of mass 3kg is moving at 10ms~" on a smooth horizontal surface when it moves onto
a rough horizontal surface with coefficient of friction 0.35. Find the distance which it travels
on the rough surface before coming to rest.

4 A block of mass 6kg moves on a rough horizontal surface (coeflicient of friction 0.25) under
the action of a horizontal force. It accelerates from rest to a speed of 4ms~! in a distance of
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12m, continues for a time at this speed and then decelerates to rest in a distance of 2m. Find
the magnitude and direction of the horizontal force required during each stage of the journey.

5 A particle, moving at 6ms~" on a smooth horizontal surface, goes onto 4 rough horizontal
surface and is brought to rest in a distance of 20m. Find the coefficient of friction involved.

6 A particle moving on a smooth horizontal surface encounters two rough areas, each 10m wide.
‘The coefficients of friction for the two areas are 0.2 and 0.4 respectively. Find the minimum
initial speed of the particle if it just makes it across the two areas.

7 A box of mass 20kg rests on a rough horizontal floor, the coefficient of friction being 0.3.
A light string is attached to the box and a tension T'is exerted with the string inclined
upwards at 30° to the horizontal. If the resulting acceleration of the box is 0.5m s, find
the value of T.

8 Find the force needed to accelerate a 2kg block at 3ms~ up a rough plane (coefficient of
friction 0.2) inclined at 25° o the horizontal if the force is

a) parallel to the slope  b) horizontal ) at 45° to the upward vertical

9 A particle of mass 4kg is being towed at constant speed up a rough plm inclined at 30° to
the horizontal by a force of 4g N acting parallel to the slope. At the top of the slope the
pa ves onto a rough horizontal plane with the same coeflicient of friction. If the
towing force continues to act in the same direction, show that the particle undergoes an
acceleration of

23

£ g

A particle of mass 5k is being towed at a constant speed of 6m~' on a rough horizontal
plane with coefficient of friction 0.2. At a certain point the towing force is reversed in
direction. Find the distance that the partice wil travel before coming to rest and explain what
will happen after it does so.

‘The diagram shows particles A and B, each of mass n1,

resting on rough planes inclined at angles  and f to the

horizontal. The coefficients of friction at A and B are jiy =
and py respectively. The particles are connected by a light

string passing under a smooth pulley at the point where

the planes meet. It is found that a force P applied to particle A directly up its slope causes the
system 10 accelerate with acceleration a; with the string taut. The same force P applied to
particle B directly up its slope causes the system to accelerate with acceleration a; with the
string taut. Show that

a— ay = gsinp — sina)
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Angle of friction

In many situations, it is convenient to replace the incuan and normal reaction
forces Fand R with a single total reaction force, S

®

me

‘The advantage of this approach is that four-force problems may be reduced to
three-force problems, enabling us to use triangles of forces. We should stress
that you should use one method or the other — do not put both sets of forces
on one diagram

The angle between the total reaction, S, and the vertical is usually represented
by 4 Resolving horizontally and vertically, we get

F=Ssini and R=Scos’
which give

£t

R

When friction s limiting, F/R = jt and 7 has its maximum possible value. In
this case,

Coeflicient of friction j: = tan 7

In this limiting-friction case, /. is called the angle of friction.

Example 7 A block of mass 10 kg rests on a rough plane inclined at 20°
10 the horizontal. The coefficient of friction between the block and the
planc s 0.3. A force P acts dircctly up the planc and the block is about to
move in that direction. Find the value of P.
sowumon

If 7 is the angle of friction, we have

03 = 167°

tan

As friction is limiting, the total reaction, S, is inclined at 16.7°
to the perpendicular to the plane, as shown.
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We draw a triangle of forces. Then, applying the sine rule, we get

We would, of course, have achieved the same result using Lami’s theorem
(see pages 59-60).

Example 8 Show that for a particle to rest in limiting equilibrium on a
rough inclined plane, the angle of inclination of the plane must equal the
angle of fiction between the particle and the plane.
soumen

‘The diagram shows a particle of mass  resting on a plane
elined at 0 to the horizontal. The total reaction, S, of the
plane must act vertically to maintain equilibrium, as there
are only two forces acting on the particle.

If equilibrium is limiting, the angle between S and the normal to
the plane is the angle of friction, 4. It is evident from simple
geometry that  equals 6.

mple 8 A particle of mass 6 kg rests on a rough horizontal
plane with coefficient of friction 0.35. A force 7 is exerted on
the particle so that it is on the point of moving. Find the least
magnitude of P for this to happen.
soumon
If 2 i the angle of friction, we have

ani=035 = =193
S0, the total reaction, 5, of the plane on the block is at an angle A
of 19.3° o the vertical, as show,

|
Let the force P act at an angle 0 to the horizontal.
We draw a triangle of forces, ABC, as shown. R
As AB is fixed and the direction of BC is fixed, the minimum length of o
BC s clearly when the angle at C is 90°, which means 0 = 19.3°. This
gives
Minimum P = 6gsin 19.3° = 194N B
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Example 10 A particle of mass 2kg rests at point P inside a rough
sphere, centre O. The cocflicient of friction is 0.27. The particle is
just kept in place by a force T along AP where A is the lowest
point of the sphere. Angle AOP is 40°. Find the value of 7.

If the angle of friction is , we have

wni=027 = 1510

As the systey equilibrium, the total reaction, S,
makes an angle ot 15 1 with the radivs O, as shown.

‘We draw a triangle of forces, as shown. Then,
applying the sine rule, we have

Exercise 9C

1 A particle of mass 3 kg rests on a rough horizontal plane with coefficient of friction 0.2. The,
particle is being pulled by a light string inclined at an angle of 30° to the horizontal. The
system s in limiting equilibrium. Use a triangle of forces to find the tension in the string.

2 A particle of mass Skg rests on a rough horizontal plane with coeflicient of friction 0.3. The
particle is being pulled by a light string inclined at an angle 0 to the horizontal. The tension in
the string is 40N and the system is in limiting equilibrium. Use  triangle of forces to find the
value of 6.

3 A particle of mass 8kg rests on a rough horizonta) planc with coefficient of friction 1. The
particle is being pulled by a light string inclined at an angle of 25° to the horizontal. The
tension in the string is 30 N and the system is in limiting equilibrium. Use a triangle of forces to
find the value of .

4 A particle of mass 4kg rests on a rough planc inclined at 30° to the horizontal. The cocfficient
of friction is 0.25. The particle is supported by a light string.
a) Use a triangle of forces or Lami's theorem to find the tension in the string under cach of the
conditions 1) to v}
) The string is parallel to the slope and the particle is about to slide down the slope.
i) The string is parallel to the slope and the particle is about to slide up the slope.
i) The string is at 20° to the planc and the particle is about to slide down the slope.
W) The string is at 10° to the plane and the particle is about to slide up the slope.
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b) Find the least tension in the string when the particle is about to slide down the slope.
©) Find the least tension in the string when the particle is about to slide up the slope.

5 A particle of mass 3kg rests at point P on the inside surface of a rough hollow sphere, centre
0, with coefficient of friction 0.35. OP makes an angle of 50° with the vertical. The particle is
acted on by a horizontal force which is on the point of moving it up the surface of the sphere.
Find the magnitude of this force.

6 A particle of mass 6 kg rests at point P on the outer surface of a rough sphere, centre O, with
coefficient of friction 0.4. OP makes an angle of 30° with the vertical. Find the least force
needed to keep the particle in this position.

7 A particle of mass i rests on a rough plane inclined at an angle « to the horizontal. The angle
of friction is 2. A horizontal force of mg N is just sufficient to prevent the particle from slidin
down the slope. A horizontal force of 3mg N causes the particle to be on the point of sliding up.
the slope. Find the values of & and .

"Two pardleof s are conceced by  gh nextenlble g of g ud replaced
he rough outer surface of a sphere of ra of the particles at the highest point

of the sphere. The string is taut and the second | paricl s as low . possible on the sphere. The

angle of friction is /. Show that the maximum possible length of the string is 2r2, with 4 given




10 Turning effects of forces

Give me somewhere 10 stand. and I will move the Earth
ARCHIMEDES

If a strip of cardboard is pinned 10 a table top by a single drawing pin so that
it s free to rotate, any horizontal force applied to the strip makes it rotate
(unless the force acts along a line which passes through the drawing pin). How
strong this turning effect is depends not only on the magnitude of the force
applied, but also on where it is applied and in which direction.

periment

‘You need a rigid uniform rod (for example, a picce of wood) at least 1 metre long.
Fix the rod so that it is firee to rotate in a vertical plane about its centre. (Ideally,
drilla hole in the rod and then nail it to a vertical post through the hole.) If this is
done accurately, the rod should stay in a horizontal position when placed there.

Hang two 40-gram masses equal distances on either side of the pivot - 48 cm
cach way is convenient. The rod should remain horizontal because its tendency
to turn anticlockwise is being exactly balanced by its tendency to turn
clockwise: the two applied forces have equal and opposite turning effects.

Now increase one of the masses () so that the rod no longer balances. Move
the larger mass towards the pivol to restore the balance. Record its distance
(x) from the pivot. Repeat this so that there is data for cight different masses
including the original 40 grams.

ostm x

ooigN me

Analysis and interpretation

‘The relationship between the force and distance values should be fairly obvious,
but you can examine it in tabular and graphical form. See the table and graphs on
‘page 184 for an example of this. The spreadsheet MOM I, available on the
Olord Universty Presswebsie (s . up.coukmechanic) enables you
10 reproduce this for your data from the experiment
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Distance Mass Force Force x Distance 1/Distance
(m) ® ™ (Nm) @)
0.48 40 0.392 0.188 2.083333333
0.32 60 0.588 0.188 3125
0.24 80 0.784 0.188 4.166 666 667
0.19 100 0.98 0.186 5.263157895
0.16 120 L176 0.188 6.25
0.14 140 1.372 0.192 7.142857143
0.12 160 1.568 0.188
011 180 1.764 0.194

15 .
z ‘.
£, .
£ .
0s- .

3 as

Force (%)

IR
Distance ()

Moment of a force

Itis clear from the experiment that the relation is
Force x Distance = Constant

(In the experiment, the constant is 0.188.) Each pairing of force and distance
achieved the same turning effect, which leads to the following definition.
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When a force F acts in a plane at a perpendicular distance d from an axis which
is perpendicular to the plane, the turning effect of the force about the axis has
magnitude | F| x d.

‘This turning effect is called the moment of the force or the torque.

As|F| is in newtons and d s in metres, the moment of a force is measured in
newton metres (Nm), which is the ST unit for this quantity.

Although we should strictly always talk about ‘moment about an axis', all the
situations we consider involve forces acting in a single planc. It thercfore
makes sense to talk about moment about a point, meaning about an axis
through the point and perpendicular to the plane of the forces.

s G

N A
We also need 1o be clear about the sense of the turning effect. In the two
situations shown above, the magnitude of the turning effect is the same.
However, in case a, the tendency is anticlockwise rotation, whereas in

case b the tendency is clockwise rotation. It is usual (o regard anticlockwise
as the positive rotational direction, so the moment in case a is +Fd and in
case b is —

Note Strictly speaking, the moment of a force is a vector quantity because it
has magnitude £d and positive or negative direction along the axis. When the
force acts in the x-y plane, the direction of the moment is the positive or
negative z-direction.

When scveral forces act i the same plane, thei toaltrniog effect bout
given point is the sum of the moments of the individual forces.

Example 1 Forces of 10N, 15N and 18N act as 18N

of the forces about A.

(1f you have not met the term lamina before,
means an idealised, infinitely thin, plane figure.
The plural s laminae, sometimes laminas.)

BN
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The I8N force acts 4m from A and turns in an anticlockwise sense.
Therefore, its moment is

+18x4=+72Nm
The 10N force acts 6m from A and turns in a clockwise sense. Therefore,
its moment is

~10%x6=~60Nm

The 15N force acts directly through A and so has no turning effect. Its
‘moment is 0N m.

‘The total moment of the forces is, thercfore,
H 72-60+0=12Nm

Exercise 10A

1 Find the moment of each of the following forces about the point A, making sure you indicate
whether it is & positive or a negative moment.

@ b o A
am N JURETTY
s3m
N BN
16N
Ll A o n 0N
758
am kY am
A
A
2 Find the total moment of the forces shown in cach of the following diagrams about ) A and i) B.
a) 2% oN
Al i
Tom Tom
L,y
™
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3 Thc mm-guml a ABCD has AB = 4.8m and a
m. M is the mid-point of AB and O is the
ccmm oflhc rectangle. Forces 2N, 3N, 4N and 6N N
act as shown in the diagram. Find the sum of the 26m) 9
moments of these forces about

aA BB gM 40

4 The diagram shows an aerial view of a revolving door.
Four people are exerting forces of 40N, 60N, 80N and
90N as shown. Find the distance  if the total moment
of the forces about O is

a) 2Nm b —$Nm ¢ ONm

Forces at an angle

‘The diagram shows a rod AB of length a. A force of
‘magnitude Fis applied at B at an angle 0 to the rod

There are twa ways of treating the moment of Fabout A.

Method 1 _The perpendicular distance from A to the line
of action

Moment of Fabout A = F x AC

= Fasin0
Method 2 The force F can be resolved into two components: Finty ¥
Feos in the direction AB a 4
Fsin perpendicular to AB by B Femo

The st componen s lang  ine through A and o s 10 turming et
about A. The moment of Fis produced by the second component.

Moment of F about A = Fsinf) x a
= Fasin0

You should become familiar with both approaches, though you will probably
find the second method to be more useful.
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Example 2 Find the total moment about the point A o
of the forces shown in the diagram.

sowmon

‘The components of the forces perpendicular to AB are
255in23" and 125in 55° respectively. Therefore,
Total moment = ~255in23° x 3.2+ 12sin 55° x 49
=169Nm

Example 3 The diagram shows a rectangular lamina
ABCD. A force of 20N is applied at C, as shown. 01035
Find the moment of this force about A o im €

sowmon

“The force has a component 20sin 35° in the direction

BC. This component has a moment about A of
20sin35° x 5.4 = 61.95Nm

“The force has a component 20cos 35 in the direction DC.
This component has a moment about A of

~20c0s35° x 3.2 = —5243Nm
Therefore, the total moment about A is
61.95 - 5243 = 9.52Nm

Forces in vector component form

Sometimes, forces may be given in the vector component form ai + bj, and.
points as cither cartesian coordinates (x, ) or position vectors i + j.

Example 4 Find the moment about the point P, with position
vector (i + 3j)m, of the force (51 + 2))N acting at the point Q.
with position vector (41 + Sj)m.

From the diagram, we can see that

The 5N component has a clockwise moment
~5x2=-10Nm

of
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The 2N component has an anticlockwise moment
2x3=6Nm

Therefore, the total moment of the force about P is
~1046=-4Nm

Exercise 10B

1 Find the moment of each of the following forces about the point A, making sure you indicate
whether it s a positive or a negative moment.

b) 3sm Ll A

e N n
1SN wr s o N 7
\ e

2 Find the total moment of the forces shown in each of the following diagrams about i) A and
i B.

36m

3 A force of 12N acts along the diagonal AC of a rectangular
lamina ABCD, as shown. Find the moment of force about B.

H
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4 Find the moment about the point P, with position vector (2§ +)m, of a force (4i + 6))N
acting a the point Q, with position vector (41 -+ 7j) m.

5 Find the moment about the point P, with position vector (i — 3j)m, of a force (2i - 3j))N
acting at the point Q, with position vector (21 +4j)m.

6 Find the moment about the point P, with position vector (~Si +j)m, of a force (~3i + 5)N
acting at the point Q, with position vector (~3i — 5j)m.

Parallel forces: resultants and couples
Principle of moments

We know that any system of forces is equivalent 0 a single force, called the
resultant. We also know that the combined translational effect of the forces is
the same, both in magnitude and direction, as that of their resultant.

‘We now state that the same holds good for their rotational effect. This is, in
fact, an assumption, although a plausible one, and those of you who like the
‘mathematical niceties may wish to turn to the appendix to this chapter for a
proof (see pages 209-11). For now, though, we apply this idea to parallel
forces and state the principle of moments.

‘The total moment of  pair of parallel ﬁ:m about any point s equal to the
moment of their resultant about that poin

Resultant of parallel forces

‘When two forces act along parallel lines, they are called like forces when they act
in the same direction, and unlike forces when they act in opposite directions.

“The magnitude of the resultant of a pair of parallel forces is obviously the sum
(for like forces) or the difference (for unlike forces) of the two forces. The
problem now is to decide the line of action of this resultant, and for this we.
use the principle of moments.

Consider like forces of PN and QN acting at points A and om N
B and at right angles to the line AB. Let the length of AB — c

be @ metres. Their resultant has magnitude (P -+ Q)N and

acts through a point C on AB, where AC = xmetres. A o o
Now consider moments about A

Total moment of the pair of like forces = 0 — Qa Nm
Moment of the resultant = (P + Q)x Nm
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By the principle of moments these are equal. Therefore, we have
(P+Q)ix=0Qa
Qa
)
‘This means that the point C is between A and B such that
AC:BC=Q:P

That is, the line of action divides the line AB internally in the ratio Q: P.

=

If the forces PN and QN are unlike forces, as shown on the
ight, their resul!am is (P~ Q)N. Its line of action is through
point C, wher < A
AC:BC=0:P
as before, but C now divide AB externally in the ratio 0 P. e
(You might like to show this for yourself.) e-oN

To summarise:
© The resultant of a pair of parallel forces PN and O N, passing through
points A and B respectively, cuts the line AB at C, where
AC:BC=Q:P

@ When the forces are like forces, the point C s internal to AB.

@ When the forces are unlike forces, the point C is external to AB.

Couples ’

When a pair of unlike forces have equal magnitude their resultant is zero.
But unless they act along the same line, they stll have  turning effect.
Such a pair of forees is called a couple.

Moment of a couple r
‘The diagram on the right shows a couple formed by unlike forces »

of magnitude PN acting & metres apart. We choose & general

point, O, at a distance of x metres, as shown. . .

ol

‘The total moment of the forces about O is

Pla+x)- Px=PaNm M
‘This means that the turning effect of a couple s the same about any point in
the plane. We can, therefore, talk about the moment of a couple withou
specifying a point.

A couple is not confined to just two forces. Any number of forces may
together form a couple provided the following two conditions obtain.
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© Their resultant has magnitude zero.
© Their total moment is non-zero.

2 Example 5 Show that the forces given in the diagram ,,. s~
form a mupk and find the moment of that couple.

soumon Agm | amc  an
Resolving perpendicular to AD, we get
Resultant =7+ 5-9-3=0 B4 ™

As the resultant is zero, the forces are cither in equilibrium or form a
couple. So, taking moments about A, we have

Total moment =7 x2+5x7~3x4=37Nm

“The forces therefore form a couple with a moment of 37Nm.

We can check that the moment is the same about other points by taking
moments about C, say, which gives

: Total moment =9 x 4+5x3~7x2=37Nm

Equilibrium of parallel forces

‘We have seen that parallel forces may reduce to a single resultant force or to a
couple. When the nsulmu is zero and there is no overall turning effect, the
forces are in equilibrium. This means that for parallel forces in equilibrium:

o if we resolve

any direction, the resultant
« if we take moments about any point, the total moment is zero,

zero

Example 8 A uniform beam AB of mass 10kg and
length 4m rests in a horizontal position on a single
support at C, 1 metre from A. The other end of the
beam is supported by a vertical string, as shown.
Find the reaction. R, at the support and the tension,
T in the string.

soumon
Resolving vertically, we have
R+T—10g=0 0]
‘Taking moments about C, we get
~10g=0 2
= T=34g=327N
Substituting into [1], we get: R =63g =
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Note  We choose to take moments about C rather than A because R has zero
‘moment about C and so only one unknown (7) appears in Equation [2]. On a
similar basis. instead of resolving, we could take moments about B to find the
value of R.

‘We could also solve the problem without taking moments by noting that the
resultant of R and 7 must be equal and opposite to the weight of the beam.
‘This means that R+ T = 10g and that R = 27, because the resultant divides
CBin the ratio T R, which is here 1:2. Solving these two equations would
give the required result

Exercise 10C

1 The following diagrams show a light rod AB, of length 4m, acted upon by parallel forces
‘perpendicular to it. Decide whether the forces are in equilibrium, form a couple or have a
single resultant. If they form a couple, find the moment. If they have a resultant, find its
‘magnitude and the distance of ts line of action from A and

CIN am ) ANT o Tm
i n_, O 2m

N 2N N B 2N o8
2 The diagram on the right shows forces acting on a rod AB of ¥ w
length Sm. Find the values of R and x when the forces !

A 5

a) are in equilibrium

b) reduce to a couple of moment 4Nm

©) reduce to a resultant of 2N downwards passing through ™~ R
the mid-point of AB.

ABCD s mcmnglc with AB =4m. Forces of §N, §N, PN and PN act along
AD respectively in me dlr:cuons indicated by the order of the letters. Find
me Value nf 3 wh:n

a) the forces are in equi
b) the forces form a cnuple ith moment 8 N n the sense ABCD.
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4 Forces of (51~ 4N, 21-+§)N and (- 71+ 3)N act at points P @ and R with positon
ors (~i -+ 2§)m, (4i+ 5j)m and (21 ~ 3j)m respectively. Show that the system is a
Couple and find s moment

5 Forces of (31+2§)N, (= 2i +J)N and (ai + bj) N act at points P(2, 5), Q(-3. 1) and
R(=2, —4) respectively (distances in metres). If the system reduces to a couple, find the values
of a and b, and find the moment of the couple.

6 Alight rod AB of length 2m is suspended by two vertical strings at A and B,
3) An object of weight 200N is suspended from the rod at C, where AC = 0.5m. Caleulate the
tensions in the strings.
b) The strings have 2 breaking strain of 180 N. The object is gradually moved along the rod
towards A. How close can it get to A before the string breaks?
©) A couple s applied to the rod so that the object can just be moved 10 A. Find the moment
of the couple:

7 A uniform beam AB of length 4m and mass S0kg rests on supports at A and B. Objects of
mass 20kg and 40kg are hung on the beam at C and D respectively, where AC = 1.4m and
AD = 3.2m. Find the reactions at the supports.

8A hcav) beam AB rests on two supports at points C and D, where CD = a. An object of
ight W rests on the beam. If the object is moved a distance b in the direction DC, show that,
provided cquilbium is matined, he feaction at C will be increased by W/a

8 A 1od AB of lenth 120 a0d weght 41 i suspndes by tins atached a1 Cand D. where
AC = 3a and BD = 4a. The breaking strain of the string at C is 3/ and that at D is 3.8/, An
object of weight ¥ is attached to the beam at a distance x from A. Find the range of values of
xif neither string s to break

10 A beam AB of weight W and length a has its centre of gravity a distance b from A. It is placed
symmetrically on two supports a distance ¢ apart. Find, in terms of ¥, a, b and c, the reactions
at the supports.

A uniform plank is 12m long and has mass 100kg. It is placed on horizontal ground at the

edge of a clff, with 4m of the plank projecting over the edge.

) How far out from the cliff can a man of mass 75 kg safely walk?

b) The man wishes to walk to the end of the plank. What is the minimum mass he should place
on the other end of the plank so he may safely do this?

A rectangular lamina ABCD is free o rotate in a vertical plane about its centre O. Weights of
W, 5, 2W and 31 arc atached at A, B, C and D respectively. I the system is in equilibrium,
find the inclination of AC to the horizontal. Show that, by changing the order in which the
weights are attached. a second equilibrium position is possible and find the inclination of the
diagonal in this case.




NON-PARALLEL FORCES: RESULTANTS AND COUPLES

Non-parallel forces: resultants and couples

On page 190, we met the principle of moments for parallel forces. Tn fact, this
principle is truc in general for any system of forces:

the same as the

The total moment of a system of forces about any point
‘moment of their resultant about that point.

‘The proof of this can be found in the appendix at the end of this chapter (see
pages 209-11),

Couples

Ttis possible for a system of non-parallel forces to form a couple.

Example 7 Forces of 10N, 0N and 12N act along the.
sides of an isosceles triangle ABC, where AC = BC = Sm
and AB = 6m, as shown. Show that the forces form a
couple and find the moment of the couple.

From the

agram, we have

cosf=1 and sin6=%

Taking the i- and j-directions as indicated in the diagram,
the resultant force is

(10cos 0+ 10sin 0J) + (10cos 0i — 10sin 0) ~ 12i
= (6 +8)) + (61— 8)) ~ 12i = 0

As the resultant is zero, the forces are either in equilibrium or else they
form a couple.

‘Taking moments about C, the only force with a turning effect is the 12N
force. Thus we have

Total moment = ~12 x 4 = ~48Nm
The forces therefore form a couple with a moment of 48 N .
We can check that this turning effect is the same about other points by

taking moments about A, say. The only force involved naw is that along
CB. Therefore, we have

=-8x

Total moment = ~10sin0 x =—48Nm
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Equilibrium of non-parallel forces

We have seen that a system of non-parallel forces can reduce to a single
resultant foree (» translational effeet) or to a couple (a rotational effect). To be
in equilibrium, both the translational and rotational effects  must be zero. This
will be the case provided the following two condi

 The resultant force in each of two directions is zero.
 The total moment about any chosen point is zero.
These are the most commonly used conditions for equilibrium.

Example 8 A ladder AB of mass 20kg rests on smooth horizontal
ground and leans against a smooth vertical wall. The inclination
of the ladder to the horizontal is 60°. The ladder is kept in position
by a horizontal force PN applied to the bottom of the ladder.
Find the value of P and the reactions at the wall and the ground.
Suppose the ladder is of length 2a. The reactions R and S at the

ground and the wall are normal because the contacts are smooth.
‘The system is in equilibrium.

Resolving vertically, we get
R-2g=0 = R=19%N
Resolving horizontally, we get

P-S=0 0]
‘Taking moments about B, we have
20gc0s60° x a — Ssin60° x 2a =0 ]

From[2:  10g=5V3 = S=566N
From [} P=566N

Note You should always be careful in your choice of the dircetions for
resolving and of the point for taking moments. For instance, in Example 8 we.
could resolve parallel and perpendicular to the ladder and take moments about
the middle of the ladder. The resulting equations would be

Scos60° +20g sin 60° — Rsin 60° — Pcos 60° = 0
S5in60° + Reos 60° — 20gcos 60° ~ Psin60° = 0
(Rcos60° x ) — (Ssin60° x a) — (Psin 60° x a) =
‘These equations would still yield the correct values, but the algebra involved is
more tedious.
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Alternative conditions for equilibrium

We have scen on page 196 that we can obtain three mdepﬂ\dcnl equations if
we equate to zero the total components in two chosen directions and the total
moment about onc chosen point. We can achive a smilr resul in w0 oher
ways, which can occasionally prove more convenient.

o Method 1 Resolve in one direction and take moments about two points.
© Method 2 Take moments about three points.

In Method 1, if we take moments about P and Q. say, we must not resolve
‘perpendicular to PQ. (Otherwise a system comprising a single force along PQ
would appear to be in equilibrium.)

In Method 2, the three points must ot be collinear (for a si

lar reason).

Example 9 A uniform rod AB, of length 2m and mass Sk, rests with A
on smooth horizontal ground and B on a rough peg I m above the
ground. Find the reaction at A and the normal reaction and fri

souwmon
From the dimensions given, the angle at A is 30°. g

‘Taking moments about B, we have

5gc0s30° x 1 - Sc0s30°x 2= 0 ®

= S=25g=245N i im
‘Taking moments about A, we have

Rx 2 5geos30° x 1=0 A
212N

= R=2.5gcos 30
Resolving along AB, we get
Fe+S5in30° - Sgsin30° =
= F=25sin30° = 1225N

Example 10 A fixed smooth cylinder, radius a and centre O, rests on a
smooth horizontal surface with its axis horizontal. A rod AB of weight ¥

ts with A on the horizontal surface and B on the eylinder such that AB
i inclined at 60° to the horizontal and is a tangent to the cylinder. The
rod is held in place by a light string, AP, attached (0 the cylinder at P so
thal AFO I+ 2 smight fn. Find the tension in the string and the reactions
atA a
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sounon
In the diagram, C is the point where the lines of action of the
reactions R and S meet, and E s the point where the line of
action of the weight meets the surface. By simple geometry
and trigonometry, we can show that

CP s perpendicular to AO
AB=AD=CP=aV3 and AE=}AD
‘Taking moments about A, we have
Ra3-4Wa/3=0 = R
‘Taking moments about O, we have
§WaV3 - SaV3
Taking moments about C, we have
TaVi-iWavi=0 = T

E

Reactions in hinges and joints

Some probless reqire st fnd the resction i a binge or a ot Thi s often
dby f the reaction.

Example 11 A rod AB of length a and weight W is hinged to a vertical
wall at A and is held at an angle of 30° above the horizontal by a light
string BC, also of length a, which is fixed to the wall at C, a distance a
vertically above A. Find the reaction in the hinge at A.
sownon
Suppose the reaction has horizontal and vertical components,
Xand ¥, as shown,
Taking moments about C, we have

Xa—{Wasin60"=0 = X=1WV3
‘Taking moments about B, we have

1 Wasin 60° + Xacos 60° ~ Yasin60® = 0

= WI=X+IWV3 = Y=iW
We can now combine X and ¥ to find the reaction R:

=VETE =43

‘The reaction makes an angle 0 to the horizontal, where

Y .
tanf=<=V3 0= 60°
anf = Vi
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Three forces in equilibrium

We have already looked at problems involving three concurrent forces. We are
now in a position to make a stronger statement:

When a system of three forces is in equilibrium, the lines of action of the forces
must all pass through a single point.

The reasoning is as follows.

If the lines of action of two of the forces meet at point A, the resultant of those:
ewo forces is a force R pussing through A. For cquilibrium, the third force in the
system must be —R. and its line of action must also pass through A. (If it did not,

the system would be a couple.) The three forces are therefore concurrent.

We make use of this property to reduce some problems to simple geometry.

Example 12 A uniform ladder AB rests with A on rough horizontal
ground and B against a smooth vertical wall. The ladder is inclined at 45°
o the horizontal and is on the point of slipping. Find the coeflicient of
friction y between the ladder and the ground.

If the ladder is on the polnl of slipping, the reaction 5 at A
makes an angle A with the

‘The lines of action of &, the normal reaction at B, and a
of W, the weight, meet at C. As there are only three forces,
the line of action of S must also pass through C. B

‘We can sec that BCE and ADE are congruent right-angled
isosceles triangles, which means that CD = 2AD. Therefore, o
AD

tan =22
cD

05 = p=05

An unreal problem

‘The following is a question from an old mechanics book.
A uniform rod AB of length 2a and weight W rests with A in
contact with a smooth vertical wall. B is attached by means of
a light inextensible string of length 25 to a point € on the wall,
a distance  vertically above A. If the system is in equilibrium,
find the length AC in terms of a an

The solution to this problem uses the principle that three forces in

equilibrium are concurrent.
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‘The wall s smooth, so the reaction, R, is normal. W, R and the tension,
7, arc concurrent at D, the mid-point of BC.

From triangle ACD, we have
beost U]

From triangle ABC, we also have by the cosine rule
4@ = ¥+ 45 — dxbeost o]
Subsituting from (1] into [2], we obtain
da? = 40— dx?
= =4 -d)

“The difficulty with this problem is that if the wall were really frictionless, it
would in impossible to get the rod to remain in eqmllhnnm The
equilibrium is unstable, which means that once the system has made the
move from the equilibrium position (and any vibration or air current
‘would achieve this), it would continue to move until both A and B were
against the wall

A real problem

You are going to try to find a model that is more closely related to the real
world. You are still going to make assumptions, such as ignoring any weight
or stretch in the string, but clearly you cannot ignore friction. If the wall
contact is rough, there exists a range of values of x for which the system is in
equilibrium. There is an upper limiting position in which A is about to slide up
the wall, and a lower limiting position in which it is about to slide down. You
are going to examine this both theoretically and practically.

“The problem

A uniform rod AB of length 2a and weight W rests with A in contact with a
rough vertical wall, the coeflicient of friction being . B is attached by means
of a light inextensible string of length 25 to a point C on the wall, a distance x
vertically above A. The angle BCA is 0. Find expressions for y for both the
upper and lower limiting equilibrium positions.
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Carry out an experiment with a suitable rod and wall. Caleulate the value of
from both positions and compare the resuits

Now using a different vertical surface, calculate j« from the upper limiting
equilibrium position. Use your result to predict the value of x corresponding to
the lower limiting equilibrium position and confirm this experimentally.
‘The theory
As Ais about to slide up the wall, the total reaction acts at an angle 4 to the
normal 1o the wall, where j = tan 7, as shown.
If you set up the experiment and measure x, you can then
calculate 6 from triangle ABC using the cosine rule:
2+ 4b —4a

cosf =X EI A

From triangle CDE, DE = bsin0 and CE = bcos0.

In triangle ADE, angle D s . Therefore, you have

uni=AE
" DI

bsin0

You should draw the diagram for the lower limiting equilibrium
position and confirm that in this case

‘The practical

When you come to do the experiment, you will have more success if

repiace the rod with s of wood 2or 3o vid,andthe st wiha firy
wide, light tape which can be stuck to the underside of the strip at B, passi

Tound the end ofthe S, and pnned o the wal at C. This hlps to prevent
the tendency of the rod to slip sideways on the wall.

You should find it relatively easy to gradually manoeure the rod into a
position where A is about 10 slide upwards. Measure the distance AC. You
need to be as accurate as possible, because the formula for  is quite sensitive
10 small changes in the input values.

Now move the strip (rod) until A is about to slide downwards. Again measure
the distance AC.

‘You should now be able to calculate the estimated values of x given by your
results. This can be done direetly from the formulae above. Alternatively, you
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may wish to make use of spreadsheet MOM 2, which is available on the
Oxford University Press website (http://www.oup.co.uk/mechanics). This will
be particularly helpful for the second part of the problem when you try to find
x from a given value of .

Our attempt used a 40cm rod and a S4cm tape, s0.a = 0.2m and b = 0.27m

Upper position: ~ x=0.194m = 0=36.13

0.27c0s36.13° ~0.194
= Estimated g = ~o.
= stimated p Tsin 3615 15
Lower position:  x=0233m = 0=4238
027 c0s42.38°
= Estimated p = 083 =027cos4238° 0
0.27sin 4238
Calealating x

Instead of finding a second estimate of y using the lower position, we could

have used our estimate ¢ = 0.15 from the upper position to predict x for the

Tower position. IF you are using the spreadsheet, thi done by entering

the value for  and using the ‘goal seek’ (EXCEL) or ‘backsolver’ (1-2-3)

‘commands to obtain x. Otherwise, we need to solve the equations

2444
4bx

cosf= 1) and =
Substituting known values, we obtain

~ 1.08xcos0+0.1316 = 0 Bl
0.04055in0+0.27cos 0 [l

Eqn[l] =
Ean(2) =+

Substituting from [4] into [3], we have
0.0016400255sin’ 6 — 0.021 875in 0cos  — 0.2187cos* 0+ 0.1316 = 0

Dividing through by cos?0 and using sec?0 = 1 + tan®0, we get

0.13324025an?0 — 0.02187tan 0 ~ 0.0871 = 0
Solving this quadratic equation, we obtain
tang = 08947 (or - 0.7306)
= =418

Substituting in [4], we get x = 0.228m, which i
agreement with the recorded value of 0.233m.

in good experimental



NON-PARALLEL FORCES: RESULTANTS AND COUPLES

Exercise 10D

1 The forces (3i + 2))N, (~ 5(— 4)N and (2i +2j)N act at points with position veetors
(i+3j)m and (@i~ j)m and (~2i - 5j)m respectively. Show that these forces form a couple,
and find the moment of th couple.

2 Triangle ABC has AB = 16m, AC = BC = 17m. Forces of §N, 8.5N and 8.5N act along AB,
BC and CA respectively, with the direction given by the order of the letters. Show that these
forces form a couple, and find the moment of the couple.

3 Triangle ABC has sides of length a, b and c labelled according (o the usual convention. Forces
of magnitude ka, kb and ke act along BC, CA and AB respectively, with the direction given by
the order of the letters. By considering the vector sum of the forces, or otherwise, show that
these forces form a couple, and find the moment of the couple in terms of the area of the
triangle ABC.

4 Forces of IN, 6N, 2N, 4N, 3N and SN act in that order along the sides of a regular hexagon
of side length a. All the forces act in the same direction around the hexagon. Show that the
system is a couple and find the magnitude of its moment.

5 A uniform rod AB of length 3 metres and mass 15kg is hinged at A. A light string is attached
to B and holds the rod in equilibrium at an angle of 60° to the upward vertical through A.
Find the tension in the string when
a) the string s at right angles to AB
b) the siring is vertical
©) the string is horizontal.

6 The diagram shows a horizontal uniform rod AB of length 24
and weight 1. A light string is attached to A and B and passes
through a smooth ring at C, vertically above A, so that angle

ABC is 30°. A horizontal force

a) Show that the system cannot be in equilibrium.

b) A weight W is attached at a point D on AB 5o that
equlhbnum is maintained. Find the distance AD and the
force

7 The diagram shows a cross-section of a niform horizontal
shelf hinged 10 a vertical wall. The length AB is 2a and the
shelf s welght V. T shelf s supparted by a ight siring
CD connecting a point D on the shelf, where xtoa
point C on the wall, a distance a vertically ahove A. The
breaking strain of the string is 4. Find the minimum value
of x.
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8 A uniform rod AB of mass 10kg and length 2m rests with A on smooth horizontal ground
and B on a smooth peg | m above the ground. The rod is held in position by a horizontal force
of PN at A. Find the value of P and the magnitude of the reactions at A and B.

9 A uniform ladder of mass 20kg and length 3m rests against a smooth wall with the bottom of
the ladder on smooth horizontal ground and attached by means of a light inextensible string,
I'm long, to the base of the wall.

a) Find the tension in the string.
b) I the breaking strain of the string is 250 N. find how far up the ladder a man of mass 80kg
can safely ascend.

10 A uniform ladder of weight IV rests at an angle  to the horizontal with its top against a
smooth vertical wall and its base on rough horizontal ground with coefficient of friction 0.25.
Find the minimun value of  if the ladder does not slip.

A uniform ladder of weight I’ rests at an angle & to the horizontal with its top against a rough
vertical wall and its base on rough horizontal ground with coefficient of friction 0.25 at each
contact. Find the minimum value of « if the ladder does not

s

The diagram shows a cross-section ABCD of a uniform rectangular
block of mass 20kg. AB is 0.75m and BC is 1m. The block rests
with A on rough horizontal ground and AB at 20° to the horizontal.
Itis held in place by a horizontal force PN applied at C. The block
is on the point of slipping. Find the value of P and the coellicient of
friction between the block and the ground.

13 The diagram shows a uniform rod AB of weight I¥ and 3
length 2a. The rod rests with A on rough horizontal P
ground and leans against a rough fixed prism of

ion of radius a. ient of P
friction at both contacts is . When friction is limiting
the rod makes an angle 6 with the horizontal. Show that

sing = /L

G

14 A uniform rod AB of length 2 and weight ¥ is hinged to a horizontal ceiling at A and is
suspended by a light inextensible string BC of length a connecting B to a point C on the ceiling
such that angle ABC is 90°. Show that the tension in the string is W//5, and find the
horizontal and vertical components of the reaction of the hinge on the rod.
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15 A uniform ladder of length 2a and weight W leans at an angle 0 to the vertical against a rough
vertical wall. The bottom of the ladder rests on rough horizontal gmund The angle of friction

is J at both contacts and the ladder is on the point of slipping. By using the fact that three

forces in equilibrium must be concurrent, or otherwise, show that

Equivalent force systems

Tn general, a system of forces is either equivalent 1o a couple or it has a resultant
force. We have seen how to find the line of action of this resultant force in the
case of parallel forces. Now consider the following system of forces.

sm

wN

. Le

We can see that ABC is a 3-4-5 triangle, giving sin 0 = 0.6 and cos 0 = 0.8,

1]

We find the vector sum, R, of the forces, taking the i- and jdirections as
shown in the diagram:

R = 8i+ 5§+ 13j+ (10cos0 i — 10sin0 ) = 16i + 12§
We can see that the resultant has mdgmmdc 20N and acts at an angle ¢

to the i-direction, where tar o on
‘This means that ¢ = 0, so the system of forces is equivalent o a single
force of 20N acting in a direction parallel to AC. >

We now need to find the line of action of this resultant force.

Suppose it acts through a point E on AB, where AE = vm. The moment of
the resultant about any point must be the same as the total moment of the
original system of forces.

Taking the moments about A, we have am
3% 4 - 10cos0 x 3

“The original system of forces
(0 a single force of 20N acting alon,
line through E and parallel to AC.
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‘We could also replace the system of forces with a single force of 20N acting
along any other fine parallel to AC. provided we also apply a couple so that
the total moment is unchanged. For example. if we used a force of 20N acting
along AC, this would have zero moment about A. We would, therefore, have
to apply a couple of moment 28 N'm,

Again, i we used a force of 20N parallel to AC but acting through B, this
wo\l!d have a moment about A of 12 x 4 = 48N m. We wauld Ihemferc have

apply a couple of moment ~20Nm for the system to be e
orgnal st of forces

Similarly, the forces are equivalent to a single force of 20N Ferlkl o AC it
acting through D, together with a couple of moment 76 Nm.

Example 13 Forces of (3i + 13j)N, (2i — j)N and (~i - 4j) N act at
‘points with position vectors (i +)m, (31 + 2j)m and (~3i + 5))m
respectively. Find the magnitude of the resultant force and the equation of
its line of action.

soumon
The resultant, R, is given by
R = (34 13]) 4 Q1= ) + (=i - 4])

We can see that
|R| = VAT = 894N

and hat the line of acton o the resulant s o
gradient of 2. ) T
ne
The moment about the origin of the original system of . |
forces is K |
“Ix 4+ 13x1-2x2-1x3+1%x544x3=20Nm

‘The moment ol' Aha resultant about the origin must
therefore be 20

Suppose the line of action of R cuts the y-axis at A(0,c). Then, the
moment of R about the origin is —4c Nm, which gives

—4c=20 = c=-5m
‘The equation of the line of action s, therefore,

-5
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Example 14 The diagram shows a system of forces acting

along the sides of a regular hexagon of side length 2am. i ox

) Show that the system is equivalent to a force of magnitude
18N acting along BA together with a couple, and find the
‘magnitude of the couple.

b) Show also that the system reduces (o a single force without
4 couple and find the line of action of this force.

soumon
‘Taking the i- and j-directions as shown, the resultant is
R = (i +v3)) + B+ 3V3j) + (=50 + 5v3]) + (-8i)
+9v3j
We can see that vl W
IR| = VBT+283 = I8N
and that the direction is given by 0, as shown, where
wnf=vi = 0=60"
which is the direction of BA.

Suppose the system is equivalent to a force of 18N along i
BA together with a couple of moment A, as shown. This
should have the sume moment about any point as the original f
system.

Consider moments about A.
‘The total moment of the system is

10 % 2aV3 +6 x a3 -8 x av3 = 18ay3 Nm
In the equivalent system, the single force passes through A, o the total
moment is M. Therefore, we have

M =18ay3 Nm 2 I3
Now suppose the ssten s equivalen o singefoce of 1SN
2 along 4 line cutting AD at G, where AG = x, as shown.

The moment of this about A is A V. o
185in60° x x = 9xv/3
= 9V/I=18aV3

= 2

‘This means that G is at the centre of the hexagon, so the system is
equivalent o a single force of 18N acting along CF.

B
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Exercise 10E

1 ABC s an equilateral triangle. D and E are the mid-points of AB and BC respectively. A force
of 2N acts along AC in the dircction indicated by the order of the letters, and forces P and Q
actalong AB and BC respectively.

a) Find the magnitude and sense of P and Q if the system reduces to a couple.
b) Find the magnitude and sense of P and Q if the system reduces to a single force along DE.

2 Relative to axes with origin O, points A and B have coordinates (12, 5) and (6, 8) respectively.
Forces of magnitude 6.5 N, 10N and 4v/5N act along OA, OB and AB respectively in the
dircctions indicated by the order of the letters.

) Show that the line of action of the resultant s 29x — 8y
b) Find the magnitude and sense of the couple which must e aded 0 the system for it to
reduce to a single force passing through A.

3 ABCD is a square. Forces SN, 2N, 3N, 1N and QN act along AB, CB, CD, AD and DB
respectively, in the directions indicated by the order of the letters. Find the value of Q if the
system reduces to a single force passing through A. For this value of Q. find the magnitude of
the resultant and the angle which it makes with AB.

4 A system of forces has a clockwise moment of 22Pa about the point A(24, 24) and anticlockwise
moments of 7Pa and 4Pa about B(a, 6a) and C(~2a, 3a) respectively. If the system is equivalent to
a force Xi+ Yjacting through the point (0, ¢), find the values of X, ¥ and c.

5 The diagram shows a lamina ABCDE comprising a rectungle
ABCE with AB = 2a and BC = a, connected to an equilateral
trangle CDE. Forces of 2N, 2N, 3N. 3N and N actslong

F on CE.
x, 50 that the system is then in equilibrium. Find the
gnitude and direction of the force exerted by the system on mc
pin and find the value of x. If it were desired to pin the la
the surface using a pin at B, what couple would have to be sdded
10 the system for there still to be equilibrium?

6 The diagram shows a parallelogram ABCD in which
angle BAD is AD = DB = BC. Forces of
2 N, 2WVZ N, 5IWV2 N, PN and ON act along
AB, AD, CB, CD and BD respectively. Find the
values of P and Q if the system reduces to

2
i

) a couple
b) a single force acting along BA.

7 ABCis a riangular lamina = 4cm, BC = 5m and AC =3m. D, E and F are the mid-
points of BC, AC and AB respectively. Forces of 4N, 3N, 10N, #N and QN act along AB,
AC, CB, DE and AD respectively, in the directions indicated by the order of the letters.




a) Show that, unless the system i in equilibrium, it reduces to a single force through D.
b) Find the values of P and Q if the resultant is a force of 6N acting along FD.
 Find the vale of i he esultant cts along AD and find the magnitude of this reslant

in terms of Q.

8 The diagram shows a circular lamina of radius a. Forces of
9N, 8N, 2N and PN act at the ends of two perpendicular
diameters, as shown.

a) Show that the system cannot be in equilibrium.

b) Show that if the system reduces to a couple, the magnitude
of the couple is (2~ V3)a.

©) If the value of 2 is 10 and the system reduces (0 a single
force through the centre of the circle, find the value of a.

Appendix

Principle of moments for parallel forces

First, we find the line of action of the resultant of a pair of like parallel forces.

Suppose we have like forces of PN and N acting at A and B. The resultant of
the forces has a magnitude of (P + ) N and acts at some point C, as shown.

We can add a pair of equal and opposite forces to the system without changing
the overall situation. Suppose we add forces of PON at A and B, as shown
below.

ron ron

N on
®roN

‘The forces which now act at A have a resultant of magnitude

Py/QTF 1 N acting at an angle 0, where tan 0 = 0, as shown.

Similarly, the forces which now act at B have a resultant of

magnitude QvPT+ 1 N acting at an angle ¢, where tan¢ = P,
as shown.

QN
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‘The pairs forces at A and B can be replaced by
these resultant forces. The lines of action of these
forces intersect at D, as shown. The resultant o

the whole system s stll (P + Q)N and we can

now see that it line of action must pass through D.

PATTIN QN

I the length CD = i, then we have
=0 = AC=hQ
wng=P = BC=iP

Sgn,llh: line of action of the resultant divides the line AB internally in the ratio

®-oN

Note I we have a pair of unlike forces of magnitude PN and O N, where
P> Q, we can follow a similar procedure to the one above. (You might like to
try this for yourself.) The resultant is now a force of magnitude (P — Q)N. Tts
line of action is through the point C, where AC:BC = Q: P as before, but C
now divides AB externally in the ratio Q: .

Proving the principle of moments
Supposs e have ke forcsof magaide 2N and
QN and any point O. The line through O at right
angle to the direeion of the forces cuts the ines
of action of 7 and Q at A and B respectively, and
the line of action of their resultant at C, as shown. @Yo

C divides AB in the ratio Q: P, so we can put AC = kQ and BC = kP.
Let BO =

‘The total moment of the two forces about O is
PUQ + kP +a) + Qa=kPQ + kP + Pa+ Qa

‘The moment of the resultant about O is
(P+Q)kP+a) = kPQ + kP* + Pa+ Qa

Sn. the moment of the resultant is the same as the total moment of the rom

argument will establish this for unlike parallel forces. Why not
e o yourself)

Principle of moments for non-parallel forces
‘We can now establish that the principle holds for non-parallel forces.

We have already scen that the moment about point A of a force F acting at
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point B is given by the moment about A of the component of the force
perpendicular to

For example, in the diagram, the moment of F about A
is Fasinf.

Now consider the moments about point O of forces P
and Q whose resultant is R as shown. We draw the
perpendicular OA from O to the line of action of R,
cutting the lincs of action of Pand @ at B and C.

‘The components Psin 0 and Qsin ¢ are equal and opposite
(because the total of components at right angles to the
resultant must be zero). So, R is the resultant of the
components Pcos0 and Qcos ¢. These are parallel forces,
therefore, by the principle of moments for parallel forces,
Pcos0 x OB+ Qcos x OC = R x OA
But the left-hand side of this equation s the total moment
of P and Q about O, and the right-hand side is the moment
of their resultant about O. So, the principle of moments
holds for non-parallel forces.




Examination questions

Chapters 8 to 10
Chapter 8

1 A teacher, on playground duty, notices Jill Sm due north of Susan. Ji
with velocities of 4ms~' due south and 4y/3ms~' due east respectively.
1) Find the magnitude and direction of the velocity of Jill relative to Susan.
1) I they maintain these velocitis, find the shortest distance between Jill and Susan

and Susan are running

(NICCEA)

2 A bird wishes to fly 10 a tree 2km due east of its present position. It can fly at 3ms~" in stll
air. There is a wind of speed 1 ms~' blowing from the north-east.
1) Find the dirction in which the bird should fly.
1) Find its speed towards the tree.
‘The wind abruptly changes direction # seconds after the bird has started its flight and blows
from the east at the same speed. The total time for the bird to reach the tree is 16 minutes.
1) Find the value of 1. (NICCEA)

3 A rally car is travelling at 24v/2 ms™! due east. A marshal is running at 3ms™!

easterly direction.

in a south-

1) Find the magnitude and direction of the velocity of the rally car relative to the marshal.

At a certain instant, the marshal is 25m north-cast of the rally car. In order to read the

number on the side of the car, the marshal needs to be within 20m of it, Assume the car and

marshal maintain the velocities given above.

i) Find how long the marshal will have to read the number. Give your answer in seconds.
(NICCEA)

4 The figure on the right shows o jetties P and
Q on the shore of a calm lough. The bearing of

Q from P is 120°. A motorboat leaves P and

travels dircetly towards Q at §ms ™. A police .
launch which is patrolling the lough N

travelling on a bearing of 210° at 10m .

1) Find the velocity of the police launch

relative to the motorboat.
At 1,00 pm, when the police launch is 2.5 km @
due east of the motorboat, it alters course in
order to intercept the motorboat.
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) Find the course on which the police aunch should be steered.
Shortly after 1.00 pm the crew of the motorboat sight the police launch at a distance of 0.568 k.
1) At what time does this sighting occur?  (NICCEA)
Two particles A and B have constant velocities 4 — 3j and 5.251 + 7}, respectively. Initially A
has position vector 4i + 10 and B has position vector ~i — 30)
) Show that the directions of motion of A and B are perpendicular.
b) 1) Show that at time 1 the position vector of A is given by
£ = @i+ 10)) £ (4 - 3))

1) Write down, in a similar form, the position vector of B at time 1.

) Given that the particles collide. find the time at which the collision occurs.  (NEAB)

A football pitch s a horizontal plane and O is a fixed point on the pitch. The vectors i and j
ependicular unit vectors i this horizontal plane. Colin and David are two players on the
pitch. At time 7 = 0, David kicks the ball from the origin O with a constant velocity 8ims~'
and runs thereafier with constant velocity (3i + $]),.5™'. When David kicks the ball, Colin is at
the point with position veetor (10i + 8]) m and starts running with constant velocity
Gi=4hms
) Write down the position vectors of Colin and David at time 7 seconds.
b) Verify that Colin intercepts the ball after 2 seconds.

ing it a constant velocity of (2 + uj)ms~1.
ms to pass it to David who maintains his constant velocity. Given that David intercepts

As soon as Colin intercepts the ball he kicks it,
He
the ball 2 seconds after Colin has kicked it,

©) find the values of and s (EDEXCEL)

Two motorboats A and B are moving with constant velocities. The velocity of A s 30 kmh~!
due north, and B is moving at 20kmh~! on a bearing of 060°. The unit vectors i and

due east and north respectively. At 10am the position vector of B is 70jkm relative to
a fixed origin O and A is at the point O; { hours later, the position veetors of A and B are rkm
and skm respectively.

a) Find the velocity of B in the form (i +gj)kmh-"

b) Find expressions for r and s in terms of 1

“The boats can maintain radio contact with each other, provided that the distance between them

is no more than 70km.

©) Find the time at which the boats are again at the maximum distance at which they can
maintain radio contact with each other.  (EDEXCEL)
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Chapter 9

“The diagram shows two sledges being pulled by a team of dogs at a steady speed over rough
level ground. The ropes connecting the sledges and the dogs are horizontal. The first sledge has
mass m, the second sledge has mass 2m, and the coefficient of friction between each sledge and
the ground is 4.

) Show, on a sketch, the main horizontal and vertical forces acting on each sledge.
b) Find expressions in terms of u, m and g for

) the tension in the rope connecting the two sledges

1) the total horizontal force exerted by the dogs on the first sledge.  (NEAB)

9 A man irons a shirt by pressing down on an iron, applying a force of magnitude R newtons at
an angle 5° to the vertical. He moves the iron slowly at constant speed over the shirt which is
spread out on a horizontal ironing board. The iron has mass +kg, and the coefficient of
friction between the iron and the shirt is 1. To iron out the creases on the shirt successfully, the
magnitude of the total vertical force cxericd on the shirt by the iron must be 20N. By
modelling the iron as a particle, and ignoring any effect of air resistance, find, to three
significant figures,

a) the value of

b) the value of R.

€) Explain why, in the situation described, it is a reasonable assumption to ignore air
resistance.  (EDEXCEL)

10 In an exercise, a gymnast assumes a position in which her body is in a straight line and e
ands ae resing ot against & horizontal creular rail, as shown in Fi. 1. 1 is required t
determine he east coeicent of fricion betwecn her Shoes and the round which ail present
her from slipping. Friction between her hands and the rail is considered negligible.

A1 Fie2

To model this problem, the gymnast is considered as a uniform rod AB, of length 2/ and
weight I, in equilibrium with the end A resting against a smooth horizontal circular rail and
the end B resting on a horizontal floor, as shown in Fig. 2. The rod is assumed to be tangential
to the rail and the angle between the rod and the downward vertical through A is denoted by a.
) 1) Explain why the force on the rod at A must be perpendicular to AB.
1) Explain why the lines of action of the force on the rod at A and the force on the rod at
B must meet at a point vertically above the mid-point of AB.
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1) Draw a diagram 1 illustrate the forces acting on the rod.
b) In the case when tanx = 2, the force on the rod at B makes an angle f with AB. The angle

of friction at B is

B Show that 45"

ii) Show that 7 >

) Deduce that che coeficent offcton between the rod and the o must be atlast 1
) Give one criticism of the mathematical model which has been used. (NEA

The figure shows a particle A, of mass ¢
3m, on a plane inclined at an angle 2
t0 the horizontal, and a particle B, of
on a plane inclined at an
~ 210 the horizontal, where
0% = 4. The plane on which A moves
is rough. the coefficient of frction
between A nd the plan e being §. The
plane on w moves is smooth. A
20 a0 conncete by & siing prasicg
over a small smooth pulley fixed at C, the highest point of the two planes.
“The string is assumed to be light and inextensible. The particles are released from rest with the
string taut and the sections AC and BC of the string parallel o lines of greatest slope in the
respective planes, and A moves down the plane. Given that neither particle has reached the top
o the bottom of its respective plane,

Adm)

a) show that the frictional force acting on A has magnitude 3 mg
b) find
i) the magnitude of the acceleration of the particles in terms of g
1) the magnitude of the tension in the string in terms of m and g.
©) State where you have used the assumption that
i) the string
1) the pulley is smooth.  (EDEXCEL)

A particle of mass 0.5kg is at rest on a rough horizontal table. The coefficient of friction is 0.3.
A horizontal force of magnitude 1.47:2 N, where ¢ denotes the time in seconds, is applied to the
particle, starting at time 1 = 0.

) Show that the particle will not move until 1 = 1.

b) Show that for £ 1 the acceleration of the particle at time ¢ is 2.947> — 2.94.

©) Find the speed of the particle when t =2, (WJEC)

A sledge of mass 40kg moves in a straight line on a horizontal snow surface and is attached to
one end of a rope. The other end of the rope is attached to a towing hook on a motorised
snowmobile. The snowmobile pulls the siedge, giving it an acceleration of 0.12ms~2. The
coefficient of friction between the sledge and the snow surface is 0.1

In an initial modelling of the situation, the sledge is modelled as a particle and the rope is
assumed 0 be hos this model,

a) find the tension

the rope.
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In a more refined model, account is taken of the fact that the towing hook on the >nn\vmuhll=
is above the level of the sledge. The rope is now assumed to make an angle of 20°
horizontal. Using this model,

b) find, in N to one decimal place, a revised value for the tensios

inthe rope.  (EDEXCEL)

4 A uniform ladder rests with its lower end on a rough horizontal path and its upper end against
a smooth vertical wall. The ladder rests in a vertical plane perpendicular to the wall. A woman
stands on the top of this ladder, and the ladder is in limiting equilibrium. The weight of the
woman is twice the weight of the ladder, and the coefTicient of friction between the path and
the ladder is 5. By modelling the ladder as a uniform rod and the woman as a particle, find, to
the nearest degree, the angle between the ladder and the horizontal.  (EDEXCEL)

15 The diagram on the right shows a uniform rod B
w

t ng in

equilibrium in a vertical plane with its end A <
on a rough horizontal planc and the point C

on the rod in contact with a smooth fixed peg.

The length AC is Ja. Given that the rod makes

an angle 0 with the horizontal, show that the

force exerted by the peg on the rod is 3 Wcos 0. Ity

Find, in terms of W and 0, the normal and frictional
forees exerted by the plane on the rod at

“The coeflicient of friction between the rod and the plane at A is 4. Deduce that. for
equilibrium to be possible

2sinfcos
Kz - 2c080 (OCR)
Chapter 10
i N v ¢ o »

The diagram shows a horizontal light rod AB resting on smooth supports at P and Q where
AP =0.3m and PQ = 0.9m. le of weight 12N is placed at A and a second particle, of
weight 27N, is placed at the point C on the rod where PC = 0.5m.

Given that the system is in equilibrium, find the reactions at P and Q. (WJEC)

7 axsm m 025w

The diagram above shows a gym bench of length 2.5m, which stands on horizontal ground.
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“The two supports of the bench are of the same height; they are 2m apart and cach is

0.25m from an end of the bench. The centre of mass of the bench is cquidistant from its ends.
When a girl of weight 376 N stands on one end, the bench is on the point of toppling. Calculate
the weight of the bench.  (OCR)

A uniform beam, AB, of length 4m and mass 30kg rests horizontally on two supports which
are Im from cach end. A man of mass 75 kg stands on the beam dircctly above one support

7) Using a suitable model, draw a diagram which shows all the external forces acting on the

W) Give two assumptions that you have made in your model,
) Find the reaction at each support.  (NICCEA)

A large uniform plank of wood of length 8 m and mass 30Kkg is held in equilibrium by two
small steel rollers A and B, ready to be pushed into a saw-mill. The centres of the rollers are
S0cm apart. One end of the plank presses against roller A from underneath, and the plank
rests on top of roller B, as shown in the figure. The rollers are adjusted so that the plank
remains horizontal and the force exerted on the plank by each roller is vertical.

) Suggest a suitable model for the plank to determine the forces exerted by the rollers.

b) Find the magnitude of the force exerted on the plank by the roller at B,

©) Find the magnitude of the force exerted on the plank by the roller at A, (EDEXCEL)

A pole of mass m and length 2a is used 10 display a light banner. The pole is modelled as a
uniform rod AB, freely hinged to a vertical wall at the point A. It s held in a horizontal
position by a light wire. One end of the wire is attached to the end B of the rod and the other

:nd is attached to the wall at a point C which is vertically above A such that / ABC is 0,
where tan 0 = 4, as shown in the figure.

) Show that the tension in the wire is c
_me
2sin0
b) Find, in terms of m and g, the magnitude 5
of the force exerted by the wall on the
©) State, briefly, where in your calculation

you have used the modelling assumption
that the pole isa rod.  (EDEXCEL)
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21
A gymnast of mass 36 kg hangs by one hand from the point P on a bar AB of length 3m and
mass 12kg. The bar is suspended by wo vcrhcal cables which are attached to the ends A and
B, and it is hanging in equilibrium in a horizontal position, as shown in the figure. The tension
the cable at A is twice the tension in lhc cnhlc at B. By modelling the bar as a uniform rod,
and the gymnast as a particle,
a) find the distance AP.
b) State two ways in which, in your calculation, you have used the model of the bar as a
“uniform rod’. (EDEXCEL)
22
osm
o1
some
=
e i .
A [ “n e 4 sk
Fig 1 Fig.2

A uniform, rigid rod AB of mass 4kg and length 0.8 m is freely pivoted 10 a wall at A. A sack

of mass 8 kg hangs from B. The rod is horizontal and rests on a small smooth peg 0.7m from

A, as shown in Fig. 1

1) Calculate the reaction of the peg on the rod.

A gt sing locivod st a0 apgl of 30° Lot rizota i now stached 10 e o a B,

shown in Fig. 2. The tension in the string is

) Calculate the moment about A of the tension in the string.

1l Show that the reaction of the peg on the rod is half the value found in part

Iv) Calculate the horizontal and vertical components of the force on the rod from the pivot
atA. (MED




®
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Fig 1 Fig.2

A uniform ladder is standing in equilibrium on horizontal ground and leaning against a vertical
sall. The ldder bas legth S m and mass [Skg: A lght rope is aached t0 the ladder 3 from
its bottom end and tied to the wall 5o that the rope is horizontal, as shown he rope
and Tdderare inthe same vericl plane. There & eglgible iction between the faidet and
the ground and between the ladder and the wall

‘The ladder is at an angle of 75 to the horizontal

8§ Draw a disgram showing ol i forces acting o the ladder, Show that e tnsion In the
rope is about 31.5N.

The rope will break when the tension in it reaches 300 N. A man of mass 80k climbs the

ladder gently.

i) How far up the ladder can the man climb before the rope breaks?

‘The ladder, without the man, is once again set up inclined at 75° to the horizontal. The rope is

attached (o the ladder 3m from its bottom end, as before, but is now fixed so that it is

perpendicular to the ladder, as shown in Fig. 2. The rope and the ladder are in the same

vertical plane.

i) Calculate the tension in the rope.  (MED

‘The diagram on the right shows a light rod AB of length 4a rigidly
joined at B 10 a light rod BC of length 24 so that the rods arc
perpendicular to cach other and in the same vertical plane, The

re O of AB s fixed and the rods can rotate freely about O in a
vertical plane. A particle of mass 4 is attached at A and a particle
of mass m s attached at C. The system rests in equilibrium with
AB inclined at an acute angle 0 to the vcruc.d R shown By taking
‘moments about O, find the value of 0.
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25 A thombus ABCD has side d centimetres and the angle
ABC=
Four forces whose magnitudes are bnewtons, 2 newtons,
bnewtons and ‘—;’nm\m act along the edges AB, BC, DC

and DA respectively. as shown in the figure on the right

“This system of forces can be replaced by a single force

acting through D and a couple.

i) Find the magnitude and direction of the single force.

W) Find the magnitude and the sense of the couple.
(NICCEA)

26 A playground roundabout ABCDEI
regular hexagon of side 1.5m. It rotates about
axis through its centre O, Three children push this
roundabout with horizontal forces of magnitudes 10N, SN
and Pnewtons, acting along the sides AF, ED and CB
respectively. The horizontal reaction at the axis O has
magnitude Rnewtons and acts at 45° to OC. This system of
forces is illustrated in the figure on the right.

in the shape of a
vertical

The system of forces reduces to a couple.

§) Show that P = 6.34.
i) Find the value of R.

) Find the mag

ide and sense of the couple.  (NICCEA)

27 The figure below shows a rectangle ABCD, where AB and AD have lengths 6/metres and
4lmetres respeetively. O is the centre of the rectangle and E is the point on BC such that CE is

x metres,
“The following four forces are applied to this rectangle:

10W newtons at B parallel to BA "
20 newtons at E parallel to BA Pt

SI¥newtons at D making an angle
2z with CD
Rnewtons at A making an angle
BA

The system of forees reduces o a single
force Pnewtons acting through O
parallel to BA.

#) Obtain an expression, in terms of

o

W and a, for 2
) Hence show that P = SV(7 + 2cos ). -

) Prove that v = £ oviccEa)




11 Centre of mass

A wonderful bird is the pelican,
His bl will hotd more than his beican.
DIXON LANIER MERRITT

Take a sheet of card and cut it to an irregular shape. Make a
‘number of holes at random positions around its edge.

‘Take a length of string. Tie a loop about two thirds of the way
along. Tie a small weight to the end of the longer portion. Tie
the other end to one of the holes in the card.

Suspend the assembly by means of the loop. When it is hanging
at rest, mark on the card the line indicated by the string.

Repeat the process with the card attached by a different hole.
“The two lines you have drawn will cross at a point G.

Now suspend the card from the other holes in turn. You will
find that the line of the string always passes through G.

Interpretation
‘The string with the weight indicates a vertical line through the
point of suspension. The line you drew was, therefore, the line of
action of the weight of the card, which must pass through the
point of suspension as the card is in equilibrium.

As this line of action always passes through G, the weight of the
card behaves as if the card were a single point mass positioned
atG.

You should be able to balance the card on the flat end of a pencil
placed at G,
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Centre of gravity, centre of mass and centroid

You will often meet these three terms used almost interchangeably. Strictly
speaking, the point you found in the experiment is the centre of gravity, which
can be defined as follows:

When a system consisting of one or more bodis having a total mass M is acted
upon by gravity, there is a point G such that the magnitude and line of action
of the weight of the system are the same as those of a particle of mass A placed
at G. G i the centre of gravity of the system.

Provided the object under consideration is small, the centre of gravity is
independent of the orient the object and coincides with a point called
the centre of mass. This depends on the distribution of mass within the object
Even in the weightless conditions of space, where centre of gravity is
meaningless, the centre of mass is stll important as it affects, for example. the
behaviour of the object in collision with other objects.

The centre of gravity and the centre of mass coincide provided the object is
small enough for the acceleration due o gravity o have effectively the same
magnitude and direction at each point of the object.

Consider a simple system consisting of two point masses of weight w; and w
They are placed at points A and B on a horizontal line through an origin O so
hat OA

g

d
‘We suppose that the system is small enough for the weights to be considered as
parallel forces. As shown on pages 190-1, they are then eqmvnlem wa

resultant force, . acting through some point G on AB, wher

The moment of R about O is the same a
about O. That is,

the total moments of

But R =w; +wy, which gives

Wi wax
Wi

‘When the line OAB is at an angle 6 to the horizontal, the above analysis.
is modified as follows.
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¥ cos 0 = wyx; €030+ wyxy cos )

oy

G is therefore independent of the orientation of the system.

G both the centre of gravity and the eentre of mass of the system.

For a very lrge object, the centre of gravity would not
usually coincide with the centre of mass. Consider, for
example, a system consisting of two cqual masses m
placed at A and B as shown, where A is twice as far as

B from E, the centre of the Earth. The centre of mass of
the system is at M, the mid-point of AB. By the inverse
square law for gravity, the weight of particle A s u quarter
of that of particle B and it acts in a different direction

The resultant of the two weights is

cos30°i + (ls‘+—i~ns\n3“‘)i
w3 o
8

‘The line of action of R is PE, where tan 0 = 9//3. This means that BP is a
ninth of BA and so the resultant weight does not act through the centre of
mass. The centre of gravity of this system would be that point on PE at which
4 mass of 2m would have a weight of R. This centre of gravity would move in
relation 10 A and B if AB were moved in relation to E.

Situations such as the one above arc unlikely to be encountered in practice.
‘The objects we deal with are small enough for the centre of gravity and centre
of mass to coincide. We can define the centre of mass of an object as follows:

“The centre of mass of a system is the centre of gravity of that system
placed in a gravitational field such that each part of the system is subject to the
same gravitational acceleration.

For a solid or a lamina (plane shape) there is a third centre, the centroid, which

the intersection of its diagonals. The centroid coincides with the centre of mass
when the object is made of a uniformly dense material.

The centroid i for example, a p
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subjected o the pressure of a uniform air flow. Regardless of the mass
distribution of the object, the resultant force caused by the pressure would act

through the centroid of the surface.

Finding the centre of mass
‘We need to be able to find the centre of mass of a system
independent of a particular gravitational field.

Suppose we have a system consisting of particles .
3, ..., my placed at points (xi, y1), (2, ¥2), - (iny ¥a)
in a plane, as shown.

I the system were placed in a uniform gravitational field
perpendicular to the plane, the resultant weight would
be the total of the weights of the individual particles and
would act through the centre of mass, G(%, 7).

Taking moments about the y-axis, we obtain
(g ;:) =S s
S
s

Cancelling by g, we get

S
d

>
&

Similarly, we can find the y-coordinate of G.

‘Taking moments about the x-axis, we obtain

(E)

S men

5" &
Sms Yom
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It is usual to combine the above formula into a vector equation:

vector ; and the centre of mass, G, has position vector F, then

S
S

Example 1 Masses of 2kg, 3kg and Skg arc placed at A3, 1), B(5. 7)
and C(1, —4) respectively. Find the position of the centre of mass.

souwnon

5
+3(3)+s

24345
_ (26
=03

So, the centre of mass is G(2.6, 0.3)

Example 2 Masses of 2kg, 4kg, kg and 3kg are placed respectively at
the vertices A, B, C and D of a light rectangular framework ABCD,
where AB = 3m and BC urther masses of | kg and Skg are
placed at E and F, the mid-points of BC and CD respectively. If the
framework is suspended from A, find the angle which AB makes with the
vertical.
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sownow P
‘The mass of the rods forming the framework is D I
assumed 1o be negligible in comparison with the e ke Sk
masses attached 10 it. .

)
Take AB and AD to be the x- and y-axcs, as 2m e
shown.
Let G(%, 7) be the centre of mass of the system. 24 sxelp
Therefore, we have A = g

2H4+T+5+543
_ (l,s7s) \
135 y,

So, the centre of mass is at G(1.875, 1.35)m.

(0)- o) +4(8) 1 (1) +5(3) +5(5) ()

When the framework s suspended from vertex A, the line
AG s vertical, as shown.

If 0 is the angle between AB and the vertical, then we have %

= 0=3575°

Exercise 11A

1 Find the coordinates of the centre of mass of each of the following systems of masses placed
respectively at the given points.
a) 3kg, Skgand 7kg at A2, 5), BG. 1) and C(4,9)
b) 9kg, 4kg, 2kg and Skg at A, 8), B(=2, 6), C(4, —4) and D(~2, -5)
©) 6kg, 12kg and 15kg at A(0, —8), B(6, —3) and C(~4, —9)
@ 2ke, Lke. Skgand 3kgat A2, 1,6), B, 2,0), C(S, -2, ~8) and D(~

2 Masses of 3kg, 8kg and 5kg are placed at points A, B and C with position vectors 3i + 6],
4 2] and 6§ — 8] respectively. Find the position vector of the centre of mass.

3 Masses of Ske, 7kg and 6 kg are placed at points A, B and C with position vectors 2i — 7 + 4k,
~3i - 5]+ $kand1 — 12K respectively. Find the position vector of the centre of mass.
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4 Masses of 4 kg, 9kg and 6kg are placed at A(5, 3), B(6, —2) and C(~1, 4) respectively. Where
should a mass of kg be placed so that the centre of mass of the whole system is at G(0, ~1)?

5 A light rectangular framework ABCD has AB = 4m and BC = 3m. Masses of Ske, 4kg, 2kg
and 3kg are placed at A, B, C and D respectively. A fifth mass m kg is placed at a point E on
€D 50 that the centre of mass of the system is at the centre of the rectangle. Find the value of
m and the position of E.

6 A cuboidal framework of light rods has a rectangular base ABCD and vertices E, F, G and H
vertically above A, B, C and D respectively. AB = 4m, AD = 3m and AE = 2m. Masses of
kg, 6kg, 2k, 2kg and Skg are placed at B, C, F, G and H respectively. Taking AB, AD and
AE (0 be the x d z-axes, find the coordinates of the centre of mass of the system.

7 Masses of 2kg, 4kg, 6kg and 9kg are placed respectively at the vertices A, B, C and D of a
light rectangular framework ABCD, where AB = Sem and BC = 3m. Find the angle which
AB makes with the vertical when the framework is suspended from A.

8 A light triangular framework ABC has AB .3m and angle BAC = 68", Masses
of 3kg. 6kg and 8 ke are placed at A, B and C respectively. The framework i suspended from
A Find the angle which AB makes with the vertical

9 ABCDE is a light framework consisting of a square ABCE and an Dty
equilateral triangle CDE, as shown. Masses of 2kg, 1kg, 4kg, Skg
and mikg are attached to A, B, C, D and E respectively. The
framework is then suspended from A. Find the value of m if the
diagonal AC makes an angle of 20° with the vertical.

Centre of mass of a rigid body

We can find the centre of mass of some common shapes by considering their
symmetry, provided that the bodies are uml’\)rml) dense. (Objects with variable
density fall outside the scope of this bo

‘One dimension

In one dimension, we have a uniform rod whose

lhncknc:s is assumed to be negligible compared with g "
—_—

its len, »

By symmetry, the centre of mass, G, of a rod AB lies

al the mid-point of AB.
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‘Two dimensions

Any plane figure whose thickness is negligible compared with its other
dimensions is called a lamina (plural laminae, sometimes laminas.)

 Uniform rectangular lamina

By symmetry, the centre of mass, G, of a uniform rectangular
lamina ABCD is at the intersection of its diagonals, as shown.

 Uniform circular lami

By symmetry, the centre of mass, G, of a uniform circular lamina
is at the centre of the circk

» Uniform triangular lamina

A triangle can be regarded as being made up of a large number
of strips of negligible thickness (that is, uniform rods) parallel to

of ts sides, as shown. The centres of mass (Gy, Gz, Gy, ete)
of these strips lie at their mid-points.

‘The centre of mass, G, of the triangle must therefore lic on

the line formed by Gy, Gy, G, etc. This is the line AD in the
diagram, joining A 10 the mid-point D of BC. This line is called
a median of the triangle.

By considering the triangle divided into slnps parallel to AC, we
can see that G lies also on the median Bl

By considering the triangle divided into strips parallel to AB, we
can see that G lies also on the median CF.

‘The medians of a triangle meet at the point which divides each
median in the ratio 2: 1. So, in this diagram, we have

[ AG:GD = BG:GE = CG:GF

(You may not have encountered this standard geometrical result. A proof is
given on page 249.)
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© Uniform semicircular lamina

‘The centre of mass of a uniform semicircular lamina of radius r
lies on the line of symmetry, as shown, at a distance  from the
straight edge (diameter).

We show by caleulus methods on pages 237-8 that
iy
I

Three dimensions

>

o Uniform solid sphere
The centre of mass of a uniform sphere must, by symmetry, lie at the centre of
the sphere.

« Uniform solid cylinder

The centre of mass of a uniform cylinder lies on its axis, halfway along

the cylinder.

This s 2 specilcase ofthe more general result eaing 0 2 niform
solid pr

 Uniform solid prism

G and G, are the centroids of the laminae which correspond to the two
ends of the prism. The centre of mass, G, of the prism is at the mid-point
of G/Gy.

 Uniform tetrahedron

A tetrahedron, ABCD, can be regarded as made up of a scries
of triangular laminae parallel to BCD. The centre of mass of
the tetrahedron lies on the line, AP, formed by the centres of
mass of these triangular laminae, as shown in the diagram.
This can be repeated with laminac parallel o ABC, ABD and & o
ACD. The four lines so generated intersect at G, the centre of
wi 3

mass of the tetrahedron, as shown.

A prism is a solid with a uniform cross-section, as shown in the diagram.
A

the

[ It can be shown that G divides AP, BQ. CR and DS
ratio 3:

‘The result can be extended to establish the centre of mass
of a cone.
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© Uniform cone

Given a cone whose vertex is V and the centre of whose base is O, then its

centre of mass, G, lies on VO, where VG:GO =

 Uniform her

sphere

The centre of mass of a uniform hemisphere lies on its axis of symmetry,

We show on page 239 that the distance  of the centre of mass from

the plane face of the hemisphere s given by

Composite bodies

Many complex shapes are made up of several components, cach of which is
one of the standard shapes just described. Each of these components may be
regarded as a point mass located at its centre of mass. The centre of mass of

the overall shape may then be found from these point masses.

Exanple $ The dsgram shows sn Labaped )
lamina ABCD! niform density. Find

its centre. urmm.

We can regard this lamina as being composed

of two rectangles, AHEF and HBCD, as shown.  7m
If we take the density to be pkgm-™ s
of AHEF is 28p kg and that of HBCD is 24pke.

Taking AB and AF (o be the x- and y-axes
respectively, the centre of mass of the body is
that of a mass of 28p kg at Gy(2, 3.5) and
another of 24p kg at Gy(7. 2).

am
im

o |p__em

o
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Therefore, we have
2 7
(;) _ 223’(3.5) ”""(z) _ (a3
7)) (28+24)p 281

So, the centre of mass is at G(4.31, 2.81)m.

Example 4 The lamina in Example 3 s folded along o
DH so that the angle AHB is 90°, as shown. Find the

centre of mass. "
3
souumon
Taking A as the origin and dircctions . j and k as shown, . :
ve: of |em
Centre of mass of AHEF is Gy(2, 3.5, 0) D
Centre of mass of HBCD is Ga(d, 2, 3)
" harat
Therefore, the position, , of the centre of mass of the
whole body is given by i
2 4
28p ‘3).5 +24p § e
et = [ 28]
(28+24)p 1.38

So, the centre of mass is at G(2.92, 2,81, 1.38)m.

Example 5 A rectangular lamina ABCD of uniform
density 1 kgm-? has a hole cut in it, consisting of a
rectangle PQRS and a triangle RST, as shown.
AD =3mand AB = 4m. § is at the centre of the
rectangle ABCD, and T and Q lie on the diagonals
5o that

ST=4SC and SQ=4SB
Find the centre of mass.

souwnow
‘Take AB and AD to be the x- and y-axes respectively.

Original rectangle ABCD has mass 12 kg and centre of mass S(2, 1.5). The
picces removed are:
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Recungle PQRS, having mass 0.75 kg and centre of mass.
Gi(25, 1.125).

Triangle RST, having mass 0375 kg and centre of mass
Ga(23, 1.75). (That is, one third of the way along from R towards S
and towards T; see page

“The required shape has mass 12 - 0.75 — 0.375 = 10875 ke and centre of
mass G(%,

‘Taking moments about the axes, we obtain
Moment of ABCD = Moment of shaded lamina -+ Moment of PQTS

() -o(5) o) (1)

= 108757 =24~ 1875~ 1 =21.125
= ¥=1943m
and = 108757 = 18 - 0.84375 — 0.65625 = 16.5
= y=1517m

So, the centre of mass is G(1.943, 1.517) m.

Example 6 The diagram shows an object
comprising a solid cylinder of radius 0.1m

and length hm attached to a solid. right 020
circular cone of radius 0.1 m and height 0.12m.

Both objects have a uniform density pkgm

Find the position of the centre of mass in terms. T 0

of h. Hence find the maximum value of / for

which the object would remain with the surface

of the cone resting on a horizontal surface.

soumon
Because the centre of mass must lic on the axis of symmetry, this is
essentially a one-dimensional problem.

Volume of cone =4 x 0.12 x 0.12 _
= 00004z m* ‘ o
So, mass of cone = 0.00047p kg ‘n

Volume of cylinder =7 x 0.1 x & T 0
0.01hzm’
0.0Umpkg

So, mass of cylinder
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Taking O in the diagram to be the origin, we have
0G) =4 x0.12=003m [See page 230]

0G; =}hm
0G=x
which give

0.0Uimp x Lh— 0.00047p x 0.03
0.01hmp +0.00047p.

Cancelling by 7p and multiplying top and bottom by 250000, we get
_ 12508 -3
2500 + 100
For the object to balance on the surface of the cone, as shown, ¥ must not
exceed OA in the diagram.

Triangles OAB and OBC are similar. Therefore, we have
OA:OB = OB:0C

= OA:01=01:012 } 4
= OA=fm ";a
So, for the cylinder to balance in this position, we have
12507 - 3
2500 + 100

25008~ 136 < 0
= -0.04<h<021

<%

= 150001

So, the length of the cylinder cannot exceed 0.21 m

Exercise 11B

1 Find the centre of mass of each of the following laminae relative to the origin O and the axes
shown. You may assume a uniform density of 1 kgm-2 in each casc.

a
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o 9

2 The diagram shows a triangular lamina ABC, in
which angle ABC is 90°, AB = 0.6m and BC =09m.
‘The triangle is attached to a second, rectangular,

12m and PS = 08m, so

that both laminac have uniform densites of 1 kgm-=.
Taking PQ and PS 10 be the x- and y-axes respectively,
find the position of the centre of mass of

02m

object.

3 A uniform rectangular card ABCD of density pkgm >
is folded along OF and BE, as shown in the diagram.
= 120cm, AD

m, AO

12 O as the origin and axes as shown, find the centre
of mass of the folded card.

20cm and CE = 40cm.

Iy

T
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4 This lamina s folded so that each rectangle is perpendicular 1o its
neighbour, as shown. The lamina has a uniform density of pkgm~2.
Taking O as the origin and axes as shown, find the coordinates of

the centre of mass of the object.

5 A uniform rod AB of mass Skg and length 2m is attached at a A
point B on the rim of a uniform disc, centre C, of radius 0.6m
and mass 10kg, 5o that the rod is perpendicular o the plane of
e disc.
) Taking BC and BA as the x- and y-axes respectively, find the
position of the centre of mass of the object.
b) If the object s suspended from A, find the angle between the
rod AB and the vertical, s

6 The diagram shows the cross-scction of a prism of uniform o sm
density. Find the minimun length of AB if the prism is to
rest with AB in contact with a horizontal surface.

k)

7 The diagram shows a cool-box consisting of a cylinder of diameter
60cm and height 80cm, with a hollow cyling I interior and a
hollow hemispherical cap. The thickness of the wall, cap and base is
10cm throughout. Find the height of the centre of mass of the empty
box above its base.
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8 The diagram shows a primitive flushing device. A conical vessel
(outer di eight 80cm; inner dimensior
diameter 57cm, height 76cm) s pivoted symmetrically at a height
hiem above its vertex, as shown. As the vessel fills with water, the
centre of mass rises above the level of the pivot, the system becomes
unstable and tips, cavsing the flush. The vessel is made of a material
which is three times as dense as water. Find the range of values of /1
for which the device will work.

9 A Tippee-Toy comprises a hemisphere of diameter 16cm topped by a
cone of diameter 16¢m and height /icm. The toy is intended to return
10 an upright position when tipped.

a) If the toy is made of a uniformly dense material,
) find the maximum value of J for which the toy will work at al
i) Show that, whatever the value of , if the toy is tipped too far it
will rest in equilibrium with the surface of the cone on the ground.
b) I h = 30cm and the hemisphere is made of a material & times as dense Toum
38 theconc', findthe i value fo & fo whicte oy cannat
rest in equilibrium with the cone in contact with the ground,

l«"@

Calculus methods: laminae and solids of revolution
Centre of mass of a uniform lamina
Consider & uniform lamina comprising the region
bounded by y = f(x), the x-axis, and the lines x = a =
and x = b. Let the density (mass per unit area) of the
lamina be p, and the centre of mass be G(¥, ).

We divide the region into strips of width ox.

‘The diagram shows the ith strip. The area of this strip
s approximately y, v, and 50 its mass is

i gy ox

The centre of mass of the ith strip is approximately (x.. 47).

We can therefore think of the lamina as being equivalent to a system of masses
m; at points with position vectors f;,) We can find the centre of mass of
the system in the usual way: !
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() zﬂ"( )

Cancelling by p and separating the components, we have

1> atex
and ya &l
>

ox

When dx — 0, the limits of the summations are given by the corresponding
integrals. This gives

N
J xydy rxf(x)d.\
f dx r[(r!dx
J' 7 dx %f'ru‘dx

I:ydx r ()dx

Example 7 Find the centre of mass of the uniform lamina comprising the
region enclosed by y = V/%, the x-axis and the lines x =

[ o

%JTA\
J:J;dx

So, the centre of mass is G(2.657, 0.8036).

Example 8 Show that the centre of a uniform, semicircular lamina of

radius 7 is J—’ from the straight edge.
N
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souwnow
‘The semicircular lamina, as illustrated, has centre of
mass G(0, ), by symmetry.

The circle has equation x* + ) = .
%] i
[Le

The denominator of this expression is the area of the lamina, which we
know to be £, Substituting for ) from the circle equation, we have

We have

wr? 3

Centre of mass of a uniform solid of revolution

Consider the solid formed by rotating, about the x-axis, the
region bounded by y = (), the a-axs, and e s

and x = b. Let the density (mass per unit volume) of
id be p. By symmetry, the centre of mass is Gz, 0).

e

We divide the solid into slices of thickness .

The diagram shows the ith slice. The volume of IhN sllc:
s approximately my7 dx, and so its mass is m; = npy? 5

“The centre of mass of the ith slice is approximately (x,,0).
‘We can therefore think of the solid as being cquivalent to a system of masses
m; at points with position vectors ( ) We can find the centre of mass of the
system in the usual way:
m ompyiox
S Y mriex
Cancelling by 7, we have
Z o ox
Yo
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Calculus methods: arcs and shells

‘When dealing with a lamina or a solid of revolution, we derive the formulae by
considering an elemental section of width x, which we then approximate as a
rectangle or a disc respectively. This approach lets us down when we come to
consider the arc of a curve or the surface of revolution (shell) generated by
rotating the arc about the

In these cases, we need to consider an clement of arc of length ds.

If we are using cartesian coordinates, we have

M\m-m

In some cases, the work is simplified by using polar coordinates. The
expression for s is then

s (%)lao ©

Centre of mass of an arc of uniform density

x [t}

Suppose the density (mass per unit length) of the arc is p. Then the mass of an
clement of arc length ds = pds.

Considering the arc as the sum of point masses, we have
>z ,,( " ) 55
Cancelling by p and separating the components, we obiain
i % and Fm %v;f"
Letting 6x — 0, we have
J xds
6]

Jm
Jvd_r

L “

Ida
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Asr = a, we have :—; =0, and equation [7] gives

a*cos0do

[
Al

2
Hence, the centre of mass has coordinates (i, n)
*

Centre of mass of a shell of uniform density

‘The shell, or surface of revolution, is formed by rotating
acurve y = f(x) about the x-axis.

By symmetry 7 = 0.

Let the density of the shell be p.

Consider an clemental section, shown shaded in the diagram.
‘The area of this is approximately that of a cylindrical shell of
radius y and length 5.

Hence, the mass of the ith clement ~ 2py,ds. Considering the
shell as being the sum of such elements, we have

. 3 2mpriyds
3 2mpyids

Cancelling by 27p and letting és — 0, we obtain
Jx" ds

o
I

If we are using cartesian coordinates, with y = f(x),
equation [9] becomes

R e [10]

E({x) 1+ (%)Z dx

By symmetry, the y-coordinate of the centre of mass s zero.
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If we are using polar coordinates, with r = £(0). we have

reos0 and y=rsin0

and so equation [9] becomes

i /1
0y[r +(dH) o
lrsinﬂ r1+(d’) do

which can be written as
" dary’,
20,2+ (L) a0
" * (dl))
r sin0y[rt+ (d') do

Again, the imegm!s r potentially comple, and you willusally only mest

situations in which <* u constant or E is zero.

Example 12 Find the coordinates of the centre of mass
of a hemispherical shell of radius a.

sounon
As in Example 11, we have polar equation r = a, but
this time for 0< 0 < %

Asr—aand :—{'7 0, we have from equation [11]
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Exercise 11C

1 The region enclosed by the curve y = x* + 1, the x-axis and the lines x = 2, x = 4 is rotated
about the x-axis. Find the centre of mass of the uniform solid formed.

2 Confirm by integration that the centre of mass of the uniform triangular lamina with vertices
(0, 0), (3a, 0) and (3a, 3b) lies at the point (2a, b)

3 The triangle whose vertices are (0, 0), (k. 0) and (k, ) is rotated about the x-axis. Show by
integration that the centre of mass of the resulting uniform cone s at the point (3, 0).

d the centre of mass of the uniform lamina formed by the x-axis and lhc loop of the curve

 sin.x between x = 0 and x = z. Make use of symmetry where possil

5 @) Find the centre of mass of the uniform lamina formed by the curve y = €, the axes and the
line x =

b) If the region in part a is rotated about the x-axis, find the centre of mass of the uniform
solid formed.

8 Find thecenoe of mas of theunifrmlamioa formed by the -as and the curves y =

b
Find the centre of mass of the uniform sold formed when the region in part a is rotated
about the x-axis.

7 The curve )2 = dax is a parabola. The point S(a, 0) s called the focus of the parabola, The
region bounded by the parabola and the line x = k is rotated about the x-axis. Find the value
of kif the centre of mass of the resulting uniform solid lics at the focus

8 A uniform lamina comprises the region in the first quadrant enclosed by the ellipse

1. Given that the area of the ellipse is rab, find the coordinates of the centre of mass

G
of the lamina. Find also the centre of mass of the uniform solid generated when the region is
rotated about the x-axis.

9 A uniform lamina comprises the region enclosed by the curve v = ¥, the y-axis and the line
y=8. Find
a) the centre of mass of the lamina
b) the centre of mass of the solid formed by rotating the lamina about the y-axi
[You will need to modify the integrals involved so that the roles of x and y are reversed ]

0 A uniform solid s formed by rotating about the x
about the x-axis

the region under curve y =2 — 3
Show that the centre of mass of the solid is at the point (1.42, 0)

1 Find the position of the centre of mass of a uniform wire of length 2ax which is bent to form
an arc of a circle of radius a.



SLIDING AND TOPPLING

12 Find the position of the centre of mass of a uniform cap of a spherc of radius a which subtends
an angle of 2z at the centre of the sphere.

13 Show that the centre of mass of the uniform conical shell formed by rotating the line x + y
r 0 < x < 6 about the x-axis is at (2, 0)

14 The portion of the curve y = 2/ between x = 0 and x = 3 is rotated about the x-axis to form
a uniform shell. Find the coordinates of its centre of mass.

Sliding and toppling

Consider an object resting in equilibrium on a rough surface. If we gradually
change the forces acting on the object, equilibrium will be broken in one of
two ways.

ing When the resultant force on the object parallel to the plxn: of
contact becomes non-zero (that s, the limiting friction force is exceeded by
the other forces), the object will slide.

© Toppling When the total moment of the forces acting on the object becomes.

non-zero, the object will topple over.
One of these situations will come about before the other, so we may decide
whether the object will lide or topple.

Example 11 A uniform cubical block ormss skg K,
and side length 0.4m rests on a rough hor P
surface. A gradually increasing horizontal force p is 3 ——
applied 10 the mid-point of an upper edge, as shown.

 coefficient of friction between the block and the T osm

surfuce is 0.6. Does the block slide or topple?

First, we find the value of P needed to make the block
slide.

Resolving in the j-direction (see the diagram). we obtain
R-8g=0 = R=8N
When the block is on the point of sliding, F = R = 4.8 N.
Resolving in the i-direction, we obtain
F-P=0 = P=F=48N
S, for the block t0 slide, P must exceed 4.8gN.
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We now find the value of P needed to make the block D
topple.

When the block is on the point of toppling, the normal t
reaction of the surface will act at O, as shown, because
the corner A is about 1o lift off the surface.

Taking moments about O, we get
04P-8gx02=0 = P=4N P
So, for the block to topple, P must exceed 4gN.

It requires a smaller force to make the block topple than to make it slide,
50 equilibrium will be broken by toppling.

Example 12 A prism of mass i, having a cross-section D
as shown, rests on a rough horizontal plank PQ. The

coeflicient of friction between the prism and the plank 030
is 0.4. The end Q of the plank is gradually raised until
equilibrium is broken. Will the prism slide or topple?

soumon

First, we find the angle needed for the prism to slide.

Resolving in the i-direction as shown, we obtain

F—mgsin0=0
= F=mgsin0 m
Resolving in the J-direction, we obtain
R—mgcos0=0
= R=mgeosd &)}

Dividing [1] by (2], we get

tang =L
®

‘The coeflicient of friction is 0.4, so when equilibrium is limiting,
F=04R. Therefore, we have

4 = 0=218

So, for the prism to slide, the angle must exceed 21.8°

tanf =




12 Work, energy and power

1tike work: it fascinates me. 1 can sit and look at it for hours. 1 love 10 keep it by me:
the idea of getng rid of it early breaks my heart.
JEROME K. JEROME

Work

If you were to lft a heavy object, drag a packing case along or pedal a cycle,
you would in each case know that you were doing work. Work is done
‘whenever a force is applied 10 alter the motion or position of an object. The
amount of work done depends on the magnitude of the force needed and the
distance through which the point of application of the force moves.

For example, Gladys and Tracy are lifting a S0kg
object using pulley

Gladys uses the first arrangement shown. We assume
that friction forces in the pulley can be neglected. The
object is being raised at a constant rate.

Resolving vertically for the object, we obtain
T-50g=0 (noacceleration)

So, the tension throughout the rope is S0g N.

‘This means that to move the object upwards through

a distance of 0.5m, Gladys has to exert a downwar

foree of 50g N on the rope and move it down through
a distance of 0.5m.

Tracy is not as strong as Gladys, but more ingenious. She
ses the second arrangement shown. We assume that the
additional pulley is smooth and has negligible mass.

Resolving vertically for the object, we obtain

= T,=50gN
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Notice the negative work related 10 friction in Example 1. We can say cither
that ~72¢J of work was done by friction, or, more commonly, that 72 J of
work was done against friction.
Work done against gravity

Suppose an object of mass m is raised at constant speed by a force T.

Resolving vertically, we obtain 7
T-mg=0
= T=mg

sed through a distance i,

Therefore, if the objec
Work done by T= mgh e
Work done by the object’s weight = —mgh

We say that the work done against gravity is mgh.

Example 2 A plank of length Sm is inclined o that the higher end is 3m

above the lower. A b mass 40 kg is dragged at constant speed up
the plank against a friction force of 120 N. Find the total work done.

sownon
‘The block undergoes a displacement of ~5m in the direction of the
friction force. Therefore,

Work done against friction = 120 x 5 = 600J
‘The block is raised through a height of 3m. Therefore,
Work done agalnst gravity = 40g x 3 = 1176]
ing block = 600 + 1176 = 1776

= Total work done in
There is an alternative approach to this problem.
Resolving parallel t0 the slope, we obtain
~ 120 - 40gsin0 = 0
But sin@ =}, therefore

=120+ 24g = 352N

There is a displacement of Sm in the dircction of 7. so

Work done = 3552 x 5 = 1776]

Nate Thx concep of vork done gaitt gavy s pariculrly useful when
the path of the object is not a straight lin
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Example 3 An object of mass 8 kg is dragged at constant speed up a
surface forming a quarter of a circle of radius 2m, against a constant
frictional resistance of 45 N. Find the total work done.

soumon T
The object is raised through 2m. Therefore, we have ®
Work done against gravity = 8¢ x 2 = 156.8
‘The object travels a distance of —(} x 47) = —zm in the 5
direction of the friction foree. Therefore, we have “N
inst friction = 457 = 141.4]

Work done against fri

So, we have
Total work done = 156.8 + 141.4 = 29821

Displacement at an angle to the force

Frequently, the force applied is dirccted at an angle to the direction in which
displaccment oeurs. For example, i a block i dragged slong  horzontl
surface using a rope, the rope may be inclined to the horizontal,

Suppose a force Fis applied to an object which is then displaced by a distance
sin a direction making an angle 6 to the direction of . There are two ways in
which we can think about this, each leading to the same result.

Method 1 The point of appl

int of application of the force moves s
from A to B, but the displacement in the direction of Fis
represented by AC, where
AC =scosfl ‘
This gives
P ———}

Work done by F = Fscos0

Method 2 The force £ can be resolved into two Faind
components, parallel and perpendicular 1o the direction

of the displacement, as shown. et

“The perpendicular component, £'sin 6, does no work =1

because there is no displacement in that direction.

‘The parallel component, Feos, is displaced a distance s.
Therefore,

Work done by F= (Fcos0) x s = Fscos0



ENERGY

AtA: GPE=0J
AUB: GPE = 400g x 30
ALC: GPE = 400g x 12

During the first stage of motion, GPE increases by 117600.

the second stage, GPE decreases by 117600 — 47040 = 70 560J.

Kinetic energy
Suppose we have an object of mass 20 kg at rest on a smooth horizontal
surface. We apply a horizontal force of 100N and pull the object for 10m.
‘The object accelerates.
Using F = ma, we get

100=202 = a=5ms?
Using ¥ = u? + 2as, where a = Sms~

P =0 4+2x5x10
= v=10ms

= 10m and u =0, we get

‘The work done in giving the object this speed is 100 x 10 = 1000J.

A moving object has the capacity to do work. We would need 10 apply a
frictional force to stop the above object and work would be done against
that frictional force. For example, suppose we applied a frictional force of
200N,

Using F = ma, we get
~20=20a = a=-10ms?
Using 12 = 1 + 2as, where a = ~10ms ™, u

G=10°-20s = s=5m

0ms~' and v = 0, we have

So, the work done against friction is 200 x 5 = 10001

By giving the object a speed of 10ms ! we stored 1000J worth of work, which
we ‘retrieved” when we brought the object (o rest.

The work capacity of an object due to its motion s called kinetic energy (KE).

In general, when we apply a force F N to a stationary object of mass kg for
a distance sm, it has acceleration ams~? and final velocity vm s, where

W 0]
Work done = Fs and F=ma = Work done

v=ls = as
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Arc length = 27 x 5 x 20 = 1134m
360

Work done against the resistance = 10 x 11.34 = 113.4)

s the change in energy of the system. Therefore, we have
Total energy at B = Total energy at A — 113.4
= 257 45732=2450 - 1134

= 840ms!

Finish

string passing over a light smooth pulley. Initially, the
particles are held level and at rest, before being
released. Find the speed at which they are travelling

Example 12 Particles A and B, of mass 2kg and 5kg S
respectively, are connected by a light inextensible
when they reach 3m apart

it T

soumon
Let the final specd of the system be » ms~!
We have the following energy situations:
Atsurt KE=0]
GPE =0
Atfinish: KE=4x2x ¥ +ix5x 0
GPE = 2¢ x 1.5+ 5¢ x (~1.5)

‘There is no external force so energy is conserved. Therefore, we have

Total energy at start = Total cnergy at finish
= 350-441=0
= y=355ms

1 A ball of mass 0.4 kg s thrown vertically into the air at a speed of 25ms". Assuming that air
resistance is negligible, use energy methods to find the speed at which it is mos
reaches a height of 20m. Is the mass of the ball a necessary picee of information?

2 A child of mass 25kg goes down a slide, starting from rest. The total drop in height is 4 metres.
a) Assuming friction is negligible, find the speed of the child at the bottom of the slide.
b) Tn fact, the child reaches the bottom travelling at 6ms-". The length of the slide is 6 m. Find
the work done against friction and the average friction force.
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Power

My mass is 90 kg, I [ were to Lllmh a flight of s
15m, T would do 90g x 3 of work.

s taking me (o a height of

‘This would be the same whether I ran up the stairs or walked up slowly.
However, the effect on my breathing and heart rate of running up stairs is
quite different from that of walking slowly. The rate at which the work s done
is clearly important.

‘The same thing applies in many situations. It requires, for example, a more
powerful pump to empty a tank in half an hour than it does to do the same
jobin five hours.

® The rate at which work is done is called power.
@ The SI unit of power s the watt (W),
® 1W is the rate of working of 1Js.

1t work is done at a variable rate, we can express the relation between work
and power in calculus terms. If P is the power and W is the work done, we
have
4w

dr
and the work done in the time interval from ¢ =

wa’ rat

Example 13 A crane lfts a load of S0kg to a height of 12m at a steady
speed of 0.6ms~". Find the power required.

P

to 1= 1, is given by

The work done against gravity is 0g x 12 = 58801
Assuming (hat we can neglectany resistance forces, this is the work done
by the crane. Therefore, we have

Time taken to lift load = 12+ 0.6 = 205

Rate of working of crane = 5880 + 20 = 294 W

So, the power required is 204 W.
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Example 14 A car of mass 900 kg moves at a steady speed of 15m
a slope inclined to the horizontal at an angle whose sine is 0.2. Resistance
forces total 400 N. Find the power output of the engine.

n 1 second, the car travels 15m on the slope, which raises it through a
vertical height of 15 x 0.2 = 3m.

Work done against gravity = 900g x 3 = 26460J
Work done against resistance = 400 x 15 = 6000J
Total work donc in each second = 32460
Rate of working = 32460W or 3246kW

So, the power output of the car engine is 32.46KW.

Examglo 15 A pump s valer from a tak heough  heght of 3
and outputs it through  circular nozzle of radius 3cm at 8m d th
Tateat which the pump is working. Ignor any resstance forces.

soumon
In cach second, the pump raises and accelerates a ‘cylinder’ of water 8m
Tong and with radius 3em.
Volume of water = 7 x 0.03 x 8 = 0.02262m*
We will assume the water has a density of 1000kgm, so we have
Mass of water = 0.0226 x 1000 = 22.62kg.
The water is raised through 3m, 50 we have
GPE given to the water = 22.62¢ x 3 = 665J
The water is accelerated from rest to 8ms™, so we have
KE given to the water = § x 22.62 x 8 =7238)
‘The work done by the pump in each second is 665 + 723.8 = 1388.8J.
‘Therefore, we have
Rate of working = 13888 W

Exercise 12C

1 Ama s @ load of 20 kg through a height of 6m using a rope and pulley. Assume the rope
ind pulley e light and smooth.
) What would be the man’s power output if he completed the task in 30 seconds?
b) If the man’s maximum power output is 180 W, what is the shortest time in which he could
complete the task?
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2 A crate of mass 80kg is dragged at a slmdy speed of 4ms™" up a slope inclined at an angle
010 the horizontal, where sin0 = he total resistance is 250N, Find the power
required.

3 Amnold filled an empty washing-up liquid bottle with water and squirted a horizontal jet at a
friend. The diameter of the nozzle was 4mm and the water emerged at 10ms™". Find his rate
of working. (Assume density of water to be 1000 kgm™

4 Amold’s friend got her own back using a stirrup pump, which is a device for pumping
water from a bucket. The pump raised the water through a height of 80cm and emitied it
as a jet with speed 8ms~! through a circular nozzle of radius Smm. Find her rate of
working

5 A winch has a maximum power output of 500 W. It is dragging a 200 kg crate up a slope inclined
at30° 10 the horizontal. The coefficient of friction between the crate and the slope is 0.6.

) Find the work done in dragging the crate a distance am up the slope.
b) Hence find the maximum speed at which the winch can drag the crate.

6 A force F = (41 + 5)) N acts on a particle, moving it along a straight groove from A t0 B,
where A has position vector (i — 2)m and B (51 + J)m. The process takes 6 seconds. Find the
rate at which F is working.

7 A pump, working at 3kW, raises water from a tank at 1.2m* min™' and emits it through a
nozzle at 15ms". Find the height through which the water is raised.

8 A horse which is capable of a power output of 800 W is able to pull a plough at a constant
speed of 1.6m s~ Find the resistance to the motion of the plough. (In fact, the customary unit
of power, 1 horsepower, is equivalent to 746 W).

9 A projectile of mass kg is accelerated at a constant rate up a vertical tube of height hm.
When it emerges it riss a urther 34m before coming insantancously (0 rest. Show that the
average rate of working while the projectile s in the tube is 2my/6gh W.

3

A device is operated by an electric motor with a rechargeable battery. The motor s pover
PW which reduces over time as the battery runs down. The power at time I is

2 500e-550 The battery i fully charged and the device s then run contimuously for 20
‘minutes. Find the total work done.

A child pushes a cart for a period of 5 from & standing start and then jumps aboard. The
power she can exert (s after starting is given by P = (100 — ) W.

a) Find the total amount of work she does.

©) Given that the child plus the cart have a total mass of S0kg and assuming there is
no significant resistance to the motion, find the speed of the cart when she jumps
board.
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Resolving in the direction of travel, we get
700 — 450 = 800a
= a=03125ms
03125ms.

So, the acceleration of the cas

b) Resolving in the direction of travel, we get
F~450=0 (no acceleration)
= F=450N
which gives
Power
= 7000=4500 =

I So, the maximum speed is 15.56ms

1556ms!

As can be seen from Examples 16 and 17, most simple problems involving
power can be solved using these two basic equations:

[ Power = | Applied force | | Velocity |
and
L Resultant force = Mass x Acceleration

Itis important to stress that in the first equation the force referred to is that
exerted by the engine etc, often called the tractive foree, whereas in the second
equation the force is the component in the direction of motion of the resultant
of all the forces,

Example 18 A car of mass 900kg travels up a hill, inclined at 10° to the

horizontal, assinsta consant resistance force of 250N. Its maximum

speed is 45km

a) Find the

b) Find the
il

wer output of the engine.
ial acceleration when it reaches level road at the top of the

soumon
a) Let the applicd force of the engine be F N. ’
Resolving up the slope, we obtain »
F =250 - 900gsin 10° = 0 250N,
= F=1716N
s00eN

‘The speed is 45kmh~!

2.5ms™". Therefore, we have



Power = Fr= 17816 x 12.5

b) When the car reaches the level, it has the same power and
initially the same speed. So, F s still 1781.6N.

Let the initial acceleration be am s
horizontally, we obtain

17816 -250=900a = a

‘Then resolving

Tms?

the car and the trailer.

Using Power = | Applied force | x | Velocity |, we get
10500 = 10F
= F=1050N

Let the aceeleration be ams

Resolving horizontally for the whole system, we get
F—300 - 400 = 1400a
= a=025ms?
Resolving horizontally for the trailr, we get
7300 = 400 x 025
= T=400N

So, the tension in the coupling is 400 N.

Problems with variable resistance

=22260TW or 223kW (to3sf)

PowER

£ sk
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250 a
g

Example 19 A car of mass 1 tonne is towing a trailer of mass 400kg on a
level road. The resistance to motion of the car is 400N and of the trailer
is 300N. At a certain instant, they are travelling at 10ms~! and the power
output of the engine is 10.5kW. Find the tension in the coupling between

So far, we have made the assumption that resistance to motion is constant.
This is never the case in reality, although for a small range of slow speeds it

‘may be approximately true.

In practice, the resistance is variable and depends on the speed of the

vehicle. The nature of the relationship may not be a precise one and may
itself change as the speed increases. For example, for a small object moving
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through the air, the air resistance is roughly proportional o the speed ¥

w about 10ms~", but for higher speeds (up to about
250ms™") the air resistance s proportional to 2. Around the speed of
sound, there are large changes in air resistance and there is no easy
relationship with speed, but once the sound barrier is broken the resistance
is again roughly proportional to v.

In a practical situation, we would have to conduct experiments and decide on a
relationship which appeared to accord with the experimental data. This would

then be one of the assumptions in our model of the situation. You can explore
the effect of different models using the spreadshect POWER, which is available
on the Oxford University Press website (hitp://www.oup.co.uk/mechanics).

Example 20 A car of mass 900 kg moves against a resistance which is
proportional 1o its speed. Iis power output is 6kW and on a level road its
‘maximum speed is 40ms~". Find its maximum speed up an incline whose
angle to the horizontal is 0, where sin0 = .

soumon 00eN
Using Power = | Applied force | x | Velocity |, we get

150 — 40k

Let the maximum speed up the hill be ¥ms~"

From Power = | Applied force | x | Velocity , we obtain

Resolving up the slope, we have
6000 500N
8000 _ 3757 - 900g x L
Vv 30
= 375124+ 294F — 6000 = 0
= V=168ms” or -952ms™
Clearly, ~95.2ms"" is inappropriate. So, the maximum speed up the
incline is 16.8ms™".
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Exercise 12D

1 A train has a maximun speed of S0m s on the level against a resistance of 40kN. Find the
power output of the engine.

2 A car of mass 800 kg has a maximum speed of 75km h~" up an incline against a resistance of
500N. The incline’s angle to the horizontal is f, where sin = . Find the power output of the
engine.

3 A train of mass 40 tonnes has a maximum speed of 15ms-! up a slope against a e of
S0KN. The slope is inclined 10 the horizontal at an angle 0, where sin0 = . Assuming the
resistance is constant, find the maximum speed of the train down the same slope.

4 The frictional resistances acting on a train are 1k of ts weight. Its maximum speed up an
incline whose sine is f- is 48 km h~!. Find its maximum speed on the level,

5 An open truck of mass 5 tonnes is carrying a load of 500 kg of fish up a hill against a constant
resistance of 800 N. It s travelling at its maximum speed of 10ms-!. The hill is inclined at 6 to
the horizontal, where sin = 4. A flock of gulls, mass 1000 kg, descends on the lorry t0 eat
the fish. Find the initial deceleration of the truck and the new maximum speed. As the truck
reaches the top of the hill and moves onto level road, the gulls, having eaten all the fish, fly
away. Find the initial acceleration of the truck.

6 A train consists of an engine of mass 50 tonnes and » trucks, each of mass 10 tonnes. The
resistance to motion of the engine is 4000 N and that of each truck is S00N. The maximum
speed of the train on the level when there arc five trucks is 120km h~". Find the power output
of the engine and the maximurm speed of a train with 7 trucks going up an incline whose angle
is 0,where sin6 = k.

7 &) A car of mass 900kg pulls a trailer of mass 200 kg. The resistance to motion of the car is
200N and of the trailer is 80 N. Find the power output of the engine if the maximum speed
on the level is 40ms .
b) The car and trailer are travelling at 8ms~' on a hill, inclined at 0 to the horizontal, where
sin@ = . If the resistance is constant and the engine is exerting full power, find the
‘acceleration and the tension in the coupling betwveen the car and the trailr.

8 The resistance to motion of a car is proportional 1o its speed. A car of mass 1000kg has a
‘maximum speed of 45ms~! on the level when its power output is $kW. Find its acceleration
when it is travelling on the level at 20m s~ and its engine is working at 6kW.

9 a) A lorry of mass 10 tonnes has a maimum speed of 20ms” up an incline when working at
70kW. The angle of the incline to the horizontal is 6, where sin 6 = 115. Find the resistance

to motion.
b) If the resistance is proportional 1o the square of the speed, find the maximum speed of the
lorry on the level when working at the same rate.



CHANGE OF MOMENTUM

Betore impact

. Smet N

Taking left to right as the positive direction, we have
Initial momentum of particle = 3 x 8 = 24Ns

Final momentum of particle =

x ~5=~I5Ns
To find the impulse of the wall on the particle, —/ N's, we use
Impulse = Change of momentum

= ~J=-15-

~39Ns
So, the magnitude of the impulse is 39N's.
‘The concepts of momentum and impulse also apply to motion in to or three

dimensions.

Example 3 A particle of mass 2 kg, travelling with a velocity of
Siyms~!, is given an impulse of (23 — 4j) Ns. Find its new velocity.

Let the new velocity of the particle be v ms~'. We then have

Initial momentum = 2(3i + 5

6i+ 10))N's
Final momentum = 2vNs
“To find ¥, we use
Impulse = Change of momentum
= 2i-4j=2v - (6i +10j)
= ve(di+3)ms!

Example 4 Steve kicks a ball of mass 0.8 kg along the ground at a velocity of
Sms~ towards Monica. She kicks it back towards him but lofts it o that it
leaves her foot at 8ms- and with an elevation of 40° to the horizontal. Find
= the magnitude and direction of the impulse from Monica’s kick.
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Taking unit veetors § and j as shown in the diagram, we obtain

Initial momentum = 0.8 x ~5i = ~4iNs
8 % (8c0s40° 1+ 85ind0° PN's
49031 +4.114)Ns

Final momentum =

Applying Impulse J = Change of momentum, we obtain

3= (4903 +4.114]) - (~

(8.903i +4.114))Ns
which gives
Magnitude of J = VE903* +4.114% = 9.807N's

The direction of J is at an angle 0 to the horizontal, as shown

in the diagram, where , s
FRITEN .
tanf =250 giving 0=248 = d—

Impulse of a variable force
I the force F is a function of 7, we have
& _F
dr
I the velocity changes from u to v as  changes from 0 to 1, we have

nf ave [ pa

M 8

= rfd::mvfmn
o

“This means that J Fdt gives the change of momentum, and is therefore the

impulse of the force



CHAPTER 13 MOMENTUM AND IMPULSE

2 Tofind the force on the wall, £, we use
Impulse = Force x Time

where the impulse is 321.7N's and the time is 1 second, giving

Exercise 13A

1 An object of mass 4kg is at rest. It receives an impulse of magnitude 28 N's. With what speed
will it commence to move'

2 An object of mass 7kg is travelling in a straight line at a speed of 4ms~'. It is acted on by a
constant force in the direction of the line and as a result its speed increases to 10m ™"
a) Find the impulse exerted on the
2 Find the force mvolved f the process took 0.35s.

3 A tennis player struck a ball so that ts path was exactly reversed. The ball approached the
racket at 35ms~! and loft at 45m s, The mass of the ball was 90g. Find the magnitude of the
impulse exerted on the ball

4 An engine of mass 20 tonnes s travelling at S4kmh-". Its brakes are applied for 3 seconds,
after which it is travelling at 45kmh~'. Find the change in momentum of the engine and hence
the average braking force applied.

5 An object of mass 2kg has a velocity of (8§ — 3j)ms~". It receives an impulse JN's, which
alters its velocity to (21 + Sjms~". Find J.

& A hockey ball of mass 200, travelling along horizontal ground at 15m s, is struck by a stick,
causing i 0 travelin the opposie direstion &t the same speed but a an iniia angl of 30 (0
the horizontal. Find the magnitude and direction of the impulse exerted by the stick.

7 A bullet of mass m, travelling at a speed 2u, sirikes an object and ricochets. The effect is that
its direction is changed by 60° and its speed is reduced to u. Find, in terms of m and u, the
magnitude of the impulse sustained by the bullet.

8 Footballers A, B and C are standing so that the angle ABC is 30°. A kicks a ball of mass 0.5kg
at 8ms~" along the ground to B. B kicks it so that it heads dircctly towards C at 6ms-! but
with an initial elevation of 40° to the horizontal. Find the magnitude of the impulse which B
exerts on the ball,

9 A hose discharges water at the rate of 15 litres per second, with a speed of 20ms~'. The
‘water strikes a wall at right angles and does not rebound. Find the force exerted on the
wall,
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10 Water is emitied by a circular nozzle of radius Scm at a speed of 25ms~!. It strikes a wall at
right angles without rebounding. Find the force exerted on the wall.

1 A rectangular block of mass 4kg rests on a mllg.h horizontal surface. The coen‘
friction between the block and the surface is 0.4, A jet of water, emerging from a circul
nozzle of radius 6em with speed yms~, is played directly on one of the Sertcal faces of the
block.

&) Find the value of v for which the block will just commence to move.

b) Find the initial acceleration of the block if the velocity of the jet is twice that in part a.

&

A parice of mass 8k, avellin wih velociy 21+ 3)ms”! s acted on for  period of 45 by
a foree F = [(3r* + 1)i + (2 — )]IN. Fin

a) the impulse of the force

b) the final velocity of the particle.

Conservation of linear momentum

Consider a system consisting of two bodies, A and B, w!
and are certainly free to move,

‘may be moving

Suppose that A exerts a force £ on B for a time r. This could happen in many
ways. There may be a collision between the bodies. The bodies may be
connected by a string which becomes taut. There may be magnetic attraction
or repulsion between the bodics.

Whatever the reason for the force, B will suffer an impulse J = F1. By
Newton's third law, there will be a force ~F exerted by B on A, and as a result
A will suffer an impulse —J.

As impulse cquals change of momentum, B's momentum has changed by J and
A’s momentum has changed by —J. This means that the total change of
momentum of the system is zero.

“This happens because the forces involved are intornal to the system. The o
‘way in which the momentum of a system can be changed is if an external A'eroe is
applied. We can state this as the principle of conservation of inear mom

The total momentum of a system in a particular direction remains constant
unless an external force is applied in that direction.

Another way of arriving at the principle of conservation of momentum is to
realise that if no external force acts on a system, the centre of mass of the
system will move with uniform velocity, even though individual parts of the
system may be moving relative to the centre of mass.
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We will analyse the motion in one dimension of a simple two-particle system to
illustrate the point.

Suppose we have particles A and B whose masses are m and m; respectively.
‘The positions of the particles at some time ¢ relative to an origin O are given
by x; and x; respectively. The centre of mass of the system is at .

Taking moments about O, we have
Oy + )% = g + s

Differentiating with respect to time, we get

o +my 3 m;
dr

The right-hand side of this equation is the total momentum of the

em.

If there are no external forces, the centre of mass moves with uniform velocity.
‘Therefore, we have

dx
<X is constant
ar

‘which implies that the total momenturn is constant.

Example 7 A body A, of mass Ske, is travelling with velocity 6ms~". It
catches up and collides with a body B, of mass 3 kg, which is Amvellmg
along the same line with velocity 4ms~'. After collision, the

coalesce (merge into  singl bod). Find the elociy afer cofision

soumon

Let v be the velocity of the combined body after Bifore coltiden

impact. omit smet
Momentum before collision = 5 x 6-+3 x 4

=4Ns
Afer colson

Momentum after collision = 8+
‘There are no external forces, so momentum is conserved.
‘Therefore, we have

Sv=42 = v=525ms”
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Example 8 Edwina is travelling downhill on a sledge. Edwina plus her
sledge have a combined mass of 50 kg. Sarah, whose mass is 30kg, is
standing on the slope when the sledge runs into her at 10ms-". She falls
on top of Edwina and the sledge continues down the hill with both of
them. Find the speed of the sledge immediately after the collision.

sownon
Let the speed after collision be v.

Before collson

Momentum before collision = 50 x 10430 x 0
= 500Ns
Momentum after collision = 80y

‘We assume that there is no friction dl’ld that the collision
is of such short duration that any a ion resulting
from the component of the weight down the slope.
negligible. There i, therefore, effectively no external force
involved and so momentum is conserved. So, we have

80v=50 = v=625ms™

Example 9 A rail truck, of mass 4 tonnes, is travelling along a straight,
horizontal rail at 4m s~
travelling in the opposite direction at Sms~!. The trucks collide and

become coupled together. Find their combined velocity after collision.

sowmon Beforecolsion
‘Take left to right to be the pos

Let the combined velocity after collision be v.
Momentum before = 4000 x 4 + 2000 x (~5)
= 6000Ns
Momentum after = 6000v

There are no external forces in the direction of motion
and so momentum is conserved. Therefore, we have

6000% Ims™

6000 =

Example 10 A body of mass 4 kg travelling with velocity (31 + 2j)m s~
collides and coalesces with a second body of mass 3 kg travelling with
velocity (i — 3j)ms~'. Find their common velocity after impact.

souumon
Let the common velocity after impact be v.
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“Total momentum before collision = 4(3i + 2§) + 3(i - 3j)
=(I5i-)Ns
Total momentum after collision = 7v
By the principle of conservation of momentum. we have

Tv=15i-j

2ti-{pms!

Impulsive tension

‘When two objects are connected by a string and the motion of one or both
of them causes the string to become taut, each object experiences a sudden
jerk unless the string is elastic. Such a jerk is referred to as an impulsive
tension,

We consider only those situations in which the string is light and any stretch
is 5o small as to be negligible. Also, we confine ourselves to the case where all
the motion takes place in the direction of the line joining the objects.

As the impulsive tension in the string is an internal force, there is no
change in the total momentum of the system. Provided the string is not
elastic, the objects both have the same velocity after the string has become
taut.

Example 11 Two particles, A and B, lie at rest on a smooth horizontal
table. They are connected by a light inextensible string which is initially
slack. A has a mass of 3kg and B 2kg. B is set in motion with velocity
$ms~! in the dircction AB. Find the common velocity of the particles
immediately after the string goes taut and the impulsive tension in the
string.

Let the common velocity be v.
Total momentum before =2 x § = 16N
Total momentum after = 2v + 3v = Sv

There are only internal forces acting, so momentum
is conserved. Therefore, we have

5v=16 = v=32ms"

A's momentum before = 0N's

A’s momentum after =3 x 3.2 = 9.6Ns
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S0, A is subject to an impulse of 9.6 Ns in the direction AB.

As the total momentum is unchanged, B's momentum is reduced by
9.6Ns. In other words, B is subject to an impulse of 9.6N's i the
direction BA.

The impulsive tension in the string is 9.6 N's.

Explosive forces

Another situation in which internal forces act upon parts of a system is when
the parts are affected by an explosive force. For example, when a gun is fired,
there is an explosion which exerts a forward force on the bullet and an equal
backward force on the gun. If the gun is free to move, it will make a sudden
‘backwards movement - the recoil. No external force is involved, so the
‘momentum of the system is conserved. Usually, the gun is stationary before
firing, and so the lotal momentum of the system is zero before and after the
shot is fired.

Find the speed with which the gun recoils.

sownon

Both the gun and the bullet are stationary before the shot s fired, 5o the
initial momentum is zero.

‘Take left to right as the positive direction, and et the recoil speed be v.

Momentum after firing = 0.05 x 250 + 1(=¥) = 125 — v

Momentum is conserved, so we have

Example 12 A bullet of mass 50g is fired horizontally from a gun of mass
1kg, which is free to move. The bullet is fired with a velocity of 250ms~".

MOMENTUM
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1 A bullet of mass 40 grams is fired horizontally with velocity 600ms~! into a block of wood of
mass 6kg, which s resting on a smooth horizontal surface. The bullet becomes embedded in
the block. Find the common speed of the bullet and block which results.

»

Two parcls, A und B, have mascs of 2kg and 3kg espectvely. They ar racling a specds
ms! respectively. They collide and coalesce. Find their common speed after
the salsion when

a) they are travelling in the same direction
b) they are travelling in opposite directions.

“

Arthur balances a box on top of 2 wall and throws a snowball of mass 0.3kg at it. The
snowball strikes the box at a speed of 10ms~" and sticks to it. Their common speed after
impact is 4ms~!. Find the mass of the box.

4 A railway truck of mass 3, travelling at a speed of 2v, collides with another of mass dm,
travelling at a speed of v. The trucks become coupled together. Find, in terms of v, the
common speed of the trucks after impact when
a) they arc travelling in the same direction
b) they are travelling in opposite directions.

o

A sledgehammer of mass 6 ke, travelling at 20ms-", strikes the top of a post of m:
does not reboun

a) Find the common speed of the hammer and post immediately after impact.
b) Find the impulse which the hammer gives (o the post

If the post is driven 15cm into the ground by the impact, find the average resistance of the
ground to the motion of the post.

6 A bullet of mass S0 is fired horizontally at a wooden block of mass 4kg, which rests on
rough horizontal surface. The coefTicient of friction between the block and the surface is 0.4,
As a result of the collision, the block, with the bullet embedded, moves a distance of 10m
along the surface before coming to rest. Find the speed at which the bullet enters the block.

7 A bullet of mass m, travelling at a speed v, strikes a block of mass M horizontally. Prior to
impact the block rests on a rough horizontal surface. The coefficient of friction between the
block and the surface is 1. The bullet becomes embedded in the block. Find an expression for
the distance travelled by the block and the embedded bullet before coming to rest.

8 A block of wood of mass 2kg rests on top of a vertical wall 3m high, which stands on
horizontal ground. A bullet of mass 50 strikes the block at a speed of 100ms-! and becomes
embedded. How far from the foot of the wall will the block land when
a) the bullt strikes the block horizontally

b) the bullet is travelling at an inclination of 60° above the horizontal when it strikes the
block.
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Example 18 An object of mass 4kg, travelling at $ms~", strikes 4 fixed
wall at right angles and rebounds. The coeflicient of restitution between
the object and the wall is 0.3. Find the velocity of the object after impact
and the impulse exerted on the wall

Let the separation speed be v. Then we have Before impact

smg
§203 = v=24ms? .—P

Soif o takelf o sght i the diagram a5 the posive dietion,
the velocity after impact is ~2.4ms~". Therefore, we have Aferimpact

Momentum of object before impact = 4 x § = 32N
Momentum of object after impact = 4 x (~2.4) = ~9.6Ns

Change in momentum of object = ~9.6 — 32 = ~41.6Ns

The object is subjected to an impulse of ~41.6N's, and the wall must
therefore suffer a corresponding impulse of 416 N's

Example 15 A particle of mass 3kg, moving on a smooth horizontal

plane at 6ms™!, collides with a stationary particle of mass 5k

coeflicient of restitution between the particles is 0.4. Find the velocities of

the particles after impact.

souwmon

As both particles are free to move, momentum is conserved. Before cltision

Take the velocities of the particles after impact to be u and v, .—’ .
as shown in the diagram. Therefore, we have

x6=18Ns Aer cllion

Momentum before impact =
Momentum afier impact = 3u+ 5v

= m
Approach speed =
Separation speed =
By Newton's law of restitution, we have
= 2

Solving (1] and (2], we get

u=075ms" and

315ms



LOSS OF KINETIC ENERGY

Loss of kinetic energy
Although momentum is conserved in an impact, such sudden changes of
wvelocity lead to a loss of kinctic energy. In Example 18, for instance, we have
Initial KE =4 x3x 8" =96)
Total energy after first impact = 1 x 3 x 2.882 + 1 x 2 x 7.68%
=71.424)
So, the first impact resulted in a loss of kinetic energy of 24.576.

‘This occurs because, in impulse situations, some of the kinetic energy is
converted into other forms of energy, such as heat and sound.

Example 19 Particle A, of mass 6 kg and moving with velocity
Sj)ms~", collides with particle B, of mass 3 kg and moving with

elocity (1~ 2y Immediately afer the mpact, A has elocty

(i-+))ms~". Find how much kinetic energy is lost in the impact.

Let the velocity of B after the impact be v.

Momentum before collision = 6(3i + 5) + 3(i — 2j)
(21§ +24))Ns

Momentum after collision = 6+ ) + 3v

By the principle of conservation of momentum, we have
3v6i+6j =21+ 24§

= v=@i+6)ms!

Speed of A before impact = /(3 + 5) = V3 ms~
Speed of B before impact = /(1 + (~2)) = V5 ms~!
Speed of A after impact = v/(1* + 1) = V2 ms™'
Speed of B after impact = /(5* + 6°) = V61 ms™'

Therefore, we have
3%5=109.5)

Total KE before impact = § x 6 x 34+
Total KE after impact = x 6 x 241 x 3 x 61 =97.5J
So, there has been a loss of KE of 12J.
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2ms _—
[_: 1
Before impact Aferimpact

V2i-V2j

Velocity before impact: u =2cos45°i —2sind5°j = u

Velocity after impact: v = veosbi+vsinj
‘The wall is smooth and so the lincar momentum parallel to it (the
idirection) will be conserved. So, we have

V2= veosd i}
In the j-direction, Newton’s law of restitution applies. Hence, ww have

Separation speed = ¢ x Approach speed

vsing =ex VZ=0.6x V2 2

Dividing (2] by [1]. we get

wng=06 = =309
Squaring and adding (1 nd (2, we et
242x036=272 = v=1649

Hence, after impact, the sphere has a speed of 1.65ms™!, making an
angle of 31.0° with the wall (both results correct to 3 sf).

1) Before impact: KE=4»x 1x2°=2J
After impact:  KE =} 1x2.72 = 1.36]
So, the kinetic energy lost during impact is (2 — 1.36) = 0.64]

Example 21 A small sphere, A, of mass | kg, moving with a specd of
4ms", collides with a second, identical, sphere, B, which is initially at rest. At
the point of contact, the line joining their centres makes an angle of 60° with
the direction l\l‘mnuun of sphere A. If the coefficient of restitution between
what ities of the the collision?




Adding [3] and 4], we obtain
2nc056 = 42V3-24V2
= weosp=21V3-12V2 51
Subtracting [3] from [4], we obtain
18V3 456V
.9V3 +28V2 16}
Dividing [1] by (6], we obtain

20 cosl

= wcosh=

tan0= = 0=51329°

3
—09V3+28v2
Squaring and adding (1] and [6], we have

WP =34 (-09V3I+28V2)

= v =38428
Dividing [2] by [5], we obtain
tang 42 = §=TL068

21v3-12
Squaring and adding [2] and [5), we obtain
@GV +IVI-12V2)
= v = 59803

"

Hence, after the collision, A has a speed of 3.84ms ! and moves along
4 line making an angle of 51.3° with the line of centres. B has a speed of
5.98ms~" and moves along a line making an angle of 71.1° with the line
of centres. The angles are measured as shown in the diagram.

b) Before the collision, we have

Total KE = 4 x 2% 6 + 4 x 2 x 8 = 100J
After the collision, we have
Total KE =4 x 2x 14.76 + 4 x 2 x 35.76 = 50.52)
‘Thus the KE lost during the collision is (100 — 50.52) = 49.5J (to 3 sf).

Exercise 13D

oBLIQUE IMPACT

1 A snooker ball, moving with a speed of 12ms™", collides with the cushion at

an angle of 25°. I

the coeflicient of restitution between the ball and the cushion is 0.7, what is the velocity of the

ball after rebounding?

2 A snooker ball, of mass 0.2 kg, hits the cushion with a speed of 10ms~! so that its direction of

motion makes an angle of 60° with the cushion. The coefficient of restitution
kinetic encrgy is lost during the collision?

much
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The friction force, F, and the coeflicient of friction, , are the same at
both contact points, and the system is about to slip. As R < S. the
slipping will take place at A, so £ = L46u.

Taking moments about B for the rod AB, we obtain
W x 1.5acos 0+ 1.46uI¥ x 3asin0 — 1.46W x 3acos =0
= u=0493
b) Resolving vertically for rod AB, we have
146W + Y- W =0
~0.46W

=y
“The fact that ¥ has proved o be negative shows that the reaction at B
exerts a downward force of 046 on the rod AB and an equivalent
upward force on the rod BC.
Resolving horizontally for the rod AB, we obtain

46 — X =0

= X =146V = 0.72W

The reaction at B therefore has magnitude

WO 0467 = 0.854W
and makes an angle ¢ with the horizontal, where

046

wng giving = 356

072

mple 3 Four equal rods, each of weight W and length 2a, are
smoothly jointed to form a rhombus ABCD. This hangs in a vertical
plane suspeded by . sing attached to A, and s held in the shupe of
square by a light rigid rod joining the mid-points of AB and AD. Fi
thrust in the rod and the horizontal and vertical reactions in the joint B.

d the

souon
‘The tension in the suspending string at A must be 41, as shown on
page 305

Because the external forces shown in the left-hand diagram are
symmetrical, we can deduce the following.

» The vertical component of the reactions in joints A and C are zero.

By resolving vertically for rod BC. it follows that the vertical
component of the reactions in joints B and D are ¥, as shown.
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4 A stepladder consists of two equal sections AB and BC, each of length 3m and mass 8 kg,
which are smoothly jointed at B. The ladder stands on smooth horizontal ground with A a
C 2 apart. The ladder is held n positon by means o a hght cord DE, joine points D and
E on AB and BC respectively, where AD and EC are both I m. A woman of mass 50 kg climbs
to.a point two-thirds of the way up AB. Find the tension in the cord, and the horizontal and
vertical reactions in the joint B,

5 Four uniform rods, each of length 2a and weight ¥, are connected to form a rhombus ABCD.
‘This hangs in a vertical plane suspended by a string attached to A, and is held in shape by
‘means of a light inextensible string of length 2av/3 joining A and C. Find the tension in the
string, and the horizontal and vertical components of the reaction in the joint B.

6 Rod AB, length a and weight ¥, and rod AC, length 2a and weight 21V, are smoothly jointed at
A. The system hangs from two fixed, smooth hinges at B and C, which are on the same level
and are positioned so that angle BAC is 90°, Find, in component form, the reactions at A, B
and C.

7 Rod AB, of length 2 and weight 1Y, is attached to a fixed smooth hinge at A. A second.
identical rod BC is smoothly jointed to AB at B. C is supported by a small ring threaded onto
a rough horizontal wire passing through A. The system is in limiting equilibrium when

AC = 2a. Show that the coefficient of fri

# and find the mags
direction of the reaction in the joint B.

8 A frame is constructed of three rods of length 3a, 4a and Sa, smoothly jointed. The rods are
‘made of a material such that a length a has weight 7. The frame is suspended from a point on
its longest side so that that side is horizontal. Find the position of the suspension point and the
reactions in the joints.

igram shows two uniform rods AB and BC, each of length 2 metres and mass Skg.,
which are smoothly jointed at B. The rods are placed symmetrically on the surface of a smooth
cylinder of radius | metre. Show that for equilibrium angle ABC is 111.4°, and find the

reaction in the joint B in that position.
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‘Taking moments about B, we have
aT3V/3 - 400a =0

- =%

V3
Resolving vertically, we have
200 + Tycos30° - 400 = 0

- n:%

Resolving horizontally, we have
Ti+ Tacos60° — Ty

This just leaves r. 1o be found. We can do this by considering the

equilibrium of L
Resolving vertically, we get >
200 Tycos30° =0 '
400 2N
= =%
T

Exercise 14B

1 In each of the following dingrams, a light framework of igid rods isin equilibrium in a vertical
planc under the action of external forces. In some cases, the framework is supported by a smooth,
fixed hinge, indicated on the diagram by a small circle. In each case, find the force in each rod.

b >




METHOD OF SECTIONS

2 A framework consists of five identical light rods forming a regular pentagon ABCDE, together
with rods BE and CE which hold it in shape. The framework is suspended from A and carries
loads of 50N at each of C and D. Calculate the forces in the rods BE and CE.

3 The diagram shows a framework consisting of seven identical v o
Tight rods. The framework is supported by forces 2 and 0 and
carries loads of W and 23, as shown. The rods are such that a
tension or compression force of more than 200N will cause
them to break. Find the largest possible value of I.

4 The diagram shows a framework consisting of nine identical
light rods. The framework is freely hinged at A and is
supported by a fixed support at B, so that AB is horizontal.
A load of 250N is suspended as shown. Calculate

8) the pressure on the support at B
b) the forces in the rods CE and CF.

5 The diagram shows a framework ABCDE of light rods
resting in a vertical plane on fixed supports at A and B.
A load of 80N is suspended from E and a load of W from C.
‘The value of W is gradually increased until the framework
is on the point of tipping. Calculate the forces in the rods
at this instant.

6 The diagram shows a framework consisting of six identical 108
light rods with a seventh rod AD such that ABDE for
square. The framework is freely hinged at A and carries »
loads of 100N and 120N at C and D respectively.
framework is held with AB horizontal by » horzontal <
force P at E. Calculate
a) the value of P 100N
b) the magnitude and direction of the reaction in the hinge at A
©) the forces in the rods AD, BD and BC.
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Graphical methods

As the fmves mmg on a given joint of a framework are in

i they can be represented by the sides of a closed
polyzon, which allows u 16 fnd th forces by sene drawing
and measurement.

‘The diagram shows a framework supported by two
unknown forces, F and G, and carrying loads of 200N and
450N. Fand G can be found by taking moments, and we
‘can then find the forces in the rods graphically.

Consider the equilibrium of the joint A. The three forces
can be represented by the sides of the triangle PQR below.

Using the scale indicated, we draw PQ 4cm long. We can then draw the sides
PR and QR at angles of 90° and 30° to PQ and measurc PR and QR. We get

PR

23em = Tim1ISN
QR=46em = T;~230N

Because we know that the 200N force is upwards and that forces ‘follow
round” a force diagram, we can establish the directions of 7y and 7 (7 is a
thrust and 7 is a tension) and mark them on our framework diagram.

We could now move on 1o draw the polygon for the forces in joint B, and so
on. This would prove a tedious process, involving as it does a separate diagram
for each joint and hence a lot of repetition, This can be avoided by
superimposing all the polygons onto a single diagram. We can do this
systematically with the help of a method of labelling known as Bow’s notation.



GRAPHICAL METHODS

Bow’s notation

‘When we draw the diagram of a framework, the rods together with the Im:s of
action of the external forces divide the page into regions. We can emphas

Ui by drawing a boundary found the Frameork and extcnding the tncs of
action of the external forces, as shown. In Bow's notation, each of these
regions is labelled with a capital letter. When we draw the force diagram, the
line representing a given force is labelled with a pair of lower-case letters which
match the regions on either side of the force.

AV

‘The steps needed o complete the force diagram are:

1 Calculate any unknown external forces.
2 Draw the force diagram for the external forces.

3 Choose a joint where not more than two forces have not been dealt with.
Add these forces to the force diagram.

4 By following round the forces in the polygon produced by step 3, decide on
the directions of the new forces. Add appropriate thrust/tension arrows to
the framework diagram.

5 Repeat steps 3 and 4 until all forces are included.

6 Find the magnitude of the forces by measurement.

‘We now apply these six steps to our example.

Step 1

Let the length of each rod be 2a.

‘Taking moments about B, we have

200 % 2a+ G x a—450 x 2a =0

By resolving vertically, we can see that F = 150N.
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We now look at joint B. The forces here separatc regions P, T, U, V and S. .
‘We already have pt, tu and sp on the diagram. By drawing a horizontal N
line from p and a 60" line from u, we complete the force polygon psvut. T

‘We know that ps is an upward force,
50 following the forces round the =
polygon shows us that 7y is a thrust

and Ty is a tension. We add these to
the framework diagram.

Finally, we consider joint C. The triangle of forces for this will be srv, and .
we already have sr and vs on the diagram. Joining 1 10 v completes the D=
triangle.

We know that st is a downward \ ,

force. Following round as usual
shows that T is a tension. We
add this o the framework diagram.

Step 6
It now just remains to measure cach length in the force diagram and so find
the magnitude of each force.

qt=23em T; = 230N (tension)

pt=115em Ty = 115N (thrust)
sv=26em Ty = 260N (thrust)

w =06em Ty =60N (tension)

3em T, =230N (tension)

=
=
-
w=23em = Ty=230N (thrust)
=
qu= =
-

ve=S52em ;= S20N (tension)
Note A small scale is used here because of the limitation on space. Tn
practice, you should use the largest convenient scale to maximise the accuracy
of your results.
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3 The diagram shows a framework ABCDE. It is smoothly
hinged at C and carries a load of 400N at E. The framework
is to be held in a vertical plane, with BC horizontal, by means
of a horizontal force P which can be applicd either at A or at D.
&) Find the required value of P.
b) Investigate graphically whether the two possible positions
for P cause different stresses in the rods. If so, is there a
preferable option?

4 The framework shown carries a load of 300N at D,
Itis supported by a smooth hinge at A and is held
in a vertical plane with AB horizontal by means of
a horizontal force P at F. -

a) Calculate the value of P.

b) Draw a force diagram for the framework and
from it find the magnitude and direction of the €
reaction in the hinge at A and the internal forces
in the rods.

5 The diagram shows a framework subject to
equal, opposing forces P. By drawing a force
diagram, find the internal forces in the rods
in terms of P and hence find the largest value
of Pif the rods break under a strain of more

& The diagram shows a framework smoothly hinged to a vertical wall
at A and E. A load of 240N is suspended from C. Use a graphical
method to find the internal forces in the rods.
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A globe sitting on a table can be modelled o N
as a composite of three parts: a uniform H
spherical shell of mass 63 kilograms; a solid H

base of mass M kilograms, height 3 cm, b
identical in form to the solid in part ;2 b

‘mount, joining the shell to the base, in the
form of a semicircular arc AB of mass 3
Xilograms, radius 6 cm, with AB inclined at
307 to the vertical. The globe is shown in the
diagram on the right.

i) Find the height of the centre of gravity
of the globe above the table.  (NICCEA)

%

6en|

A metal toolbox is modelled as a cuboid of length 0.8 m, height 0.4m and width 0.4m. The
mass of the toolbox and its partitions s 2.5 kg and its centre of mass is at the point on the
Oxy plane with coordinates (0.18, 0.23), referred to the axes shown in the figure below, where
the units are metres

Some tools are put inside on various drawers. The mass of the tools is 7.5kg and the position
of their centre of mass is the point on the Oxy plane with coordinates (0.34, 0.19).

i) Calculate the position of the centre of mass of the toolbox with the tools.

A light handle is freely pivoted at the points P and Q which are symmetrically placed in the
plane ABCD with PQ parallel to AB; le PQ is midway between AB and DC and also
midway between AD and BC. The bnx ‘with tools is lifted so that PQ is horizontal and the
toolbox is in equilibrium.

) Calculate the angle of the plane ABCD with the horizontal.
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‘The toolbox is now returned to its original position with Oy vertical. The uniform lid ABCD of

the toolbox has mass 0.5kg and is hinged to the body of the toolbox along the line AB. The lid

is opened through 90° so that the edge DC is vertically above AB (i.c. ABCD now contains the

-axis). The tools remain in their previous positions.

i) Assuming that the lid has negligible thickness, l'md the coordinates of the centre of mass of
the toolbox and tools with the lid open. (I

Chapter 12
10 A car of mass 1200 ke drives up a uraight road inclined at an angl x to the horizontal, where

sina = . It passes a point A on the road with a speed of 20ms™ “.md a point B, higher up
the road, with a speed of 15ms™", where the distance from A to Bis 1

) Find the change in the total encrgy of the car as it moves from A (0 B.
b) State whether this change is an increase or a decrease.  (EDEXCEL)

11 A particle P, of mass 1.5kg slides down a smooth
plan inclined at an angle of 30° to the horizontal.
1t starts from rest at a point A, and reaches the
bottom of the slope at the point B, where
AB'=3m, as shown in the figure on the right.

By using the principle of conservation of energy,
find the speed of P when it reaches B, giving your
answer in ms' 10 three significant figures.

(EDEXCEL)

12 A particle P of mass 0.3kg moves in a straight line on a smooth horizontal surface under the
action of a constant horizontal force of mugnllwdl: 16N. The particle starts from rest at the
point A and passes the point B with speed 12

8) Find the kinetic energy gained by P in moving from A to B.
b) Write down the work done by the force.
€) Find the distance AB.  (EDEXCEL)

3 A block of mass Skg is on a plane which is at
an angle of 40° to the horizontal. The block is
connected by light, inextensible strings to
objects A and D which hang ve
have masses of 4 kg and 15 kg respectively, as
shown in the diagram on the right. Between B
and C, the strings are parallel to the line of
greatest slope of the inclined plane and pass
over smooth pegs B and C. The object D,
which slides in a groove, is initially 1.5m

above a floor. You may assume that A never Adjise 15l
reaches the peg B and that the block never
reaches the peg C.

ol e
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17 @) The diagram on the right shows a particle P free to 10N
ove along a straight wire and acted on by a force of
magnitude 130N acting at an angle of 50° t0 the wire.
Find the work done by the force when P is moved a
distance of 2.4m 10 the right along the wire. @
b) A particle Q of mass 0.4 kg moves on the x-axis under
the action of a singe forc aeting i the posiive

x—v.\lm:lmn and of variable m.lgmludt 23 N, where xm is the distance of Q from the

I) Usmg the definition of work done as an integral, show that the work done by the force
as x increases from 110 2is 7J.
i) Given that the speed of Q when x = 1is 2ms~", find the specd of Q when x =

2.
(WIEC)

8 A jogger of mass 80 kg runs at a steady speed of 4ms~" on a horizontal road and works at a
constant rate of 140 W. Find the magnitude of the resistive forces acting.
H: then comes 10 a hill inclined at an angle 10 the horizontal where sinx = & and runs up
teady speed such that his rate of working will be increased by 30%. Assuming
mn he resiive free re unchanged, find this speed.  (WIEC)

9 8) A particle P, of mass m, moves under the action of a single force F. The velocity of P at time ¢is v.
i) Show tha

4 (om.

i) Deduce it the work done by F during any given time interval is equal to the gain in
the kinetic energy of P during that time interval.
b) A swimming pool has a chute in the form of a spiral down which children slide into the
of mass 3 down the chute, her descent taking 3 seconds. The
locity, ¥ms~", of the child at time 1 seconds is given by
= (2c0s0)i - (2sin1)j+0.121 + 1)k
where the vector k is vertically downwards.
1) Show that the power of the resultant force F acting on the child at time ¢ is
06021 -+ 1watts,
W) Find, by integration, the total work done by F during the time interval 0 < 1 < 3n.
1) Verify directly by calculation that the result in part a il holds for the given time interval.
(NEAB)

20 Assume that the fuel consumption of a car is directly proportional to its power output at any
time. A car, of mass 800 kg, experiences a resistance force that is assumed to have a magnitude
of 20v when the car is travelling at a speed .
) When the car s travelling on a horizontal road, find
1) the power output of the car at a constant specd of 20ms”!
1i) the constant speed at which the power output is 19000 W.
) The pover otput ofthe cur. when taveling at a constant sesd of 20ms " up a slope, is
000 W. Find the angle between the slope and the horizontal.
) Deseribe thee sssons wner the ol consumption of the car youldcresis compared
with that experienced when the power output is 19000 W. EB
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Chapter 13

21 a) List four factors that could influence the outcome of a collisions between two snooker balls
that are rolling along a straight line towards cach other.

b) A red snooker ball that was at rest is hit directly by a white ball moving at 0.8 ms~". After
the collision the red ball moves at 0.75ms". Find the speed of the white ball after the
collision, assuming that momentum is conserved. State clearly any further assumption you
have made.

©) Find the energy lost during the collision, defining any variables or constants that you
introduce.  (AEB 97)

22 A small smooth sphere A of mass 0.2kg and moving with speed 10ms~" catches up, and
collides directly with a second smooth sphere B, of mass 0.4kg and moving with speed 2m:
The coeflicient of restitution between the spheres is 1. Find

) the speed of A immediately afier collision
b) the magnitude of the impulse on A, (WIEC)

23 A spaceship of mass 80000 kg docks with a space station of mass 400000 kg. The space station
is travelling at 200ms - immediately before docking takes place, and the spaceship is travelling
0.6ms"" faster. In a model for the docking, two particles, moving in the same direction in the
same straight line, collide and coalesce.

Show that the speed of the spaceship s reduced by 0.5ms~! by the docking.
) Calculate the total loss in kinetic energy during the docking.  (OCR)

Acar A of mass 1200kg is about to tow another car B of mass 800 kg by means of a towrope
linked between them. Just before the towrope tightens, A is travelling at a speed of 1.5ms~!
and B is at rest. Just after the towrope tightens, both cars have a speed of vms™'.

a) Show that v = 0.9,

b) Calculate the magnitude of the impulse on A when the towrope tightens.  (NEAB)

25 A truck A of mass 15tonnes moves along a straight railway line with a speed of 8ms. It
collides with a truck B of mass 10 tonnes which is moving with a speed of 4ms~" along the
same line and in the same direction. During the collision the impulse acting on each truck has
magnitude 30000 N's.

Caleulate

a) the speed of truck A immediately after the collision

b) the speed of truck B immediately after the collision

¢) the total loss of kinetic energy due to the collision.  (EDEXCEL)
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26 A truck A of mass 6000 kg is moving with a speed of 12ms~! along a straight horizontal
railway line when it collides with another truck B of mass 9000 kg which i stationary. After
collsion the two trucks move on together.

a) Find the speed of the trucks immediately after the collision.

b) Find the magnitude of the impulse exerted on B when the trucks collide, stating the units in
which your answer is given.

After the collision, the motion of the two trucks is opposed by a constant horizontal resistance

of magnitude R newtons. The trucks come to rest 205 after the collision.

©) Find R.  (EDEXCEL)

27 Abi and Bill are ice skating and they collide.
‘You may assume that both Abi and Bill are
simply sliding and not propelling themselves
by using their skates, that there is negligible
resistance to their motion and that their
motion is always in the same straight line
with Abi on the same side of Bill

Lamsy

Abi has a mass of 56kg and Bill a mass of 64kg. Just before they collide they are sliding
ectly towards one another with speeds of 1.4ms-! and 0.6ms™" respectively, as shown in
the figure above. Immediately after the collision, Abi has a speed of 0.28ms" in the direction
of the original motion.

1) Find Bill's velocity immediately after the collision.
i) Find the coeflicient of restitution in the collision.
i) What impulse is given to Bill in the collision?

Shortly after the collision, Bill pulls Abi with a horizontal impulse of 4.48 N's towards him and
then lets go.

Iv) Caleulate Abi's velocity after the pull
When they collide again they embrace and move on together with a common velocity.

V) Caleulate the total energy lost from before their first collision to after their embrace.

(ED
28 Two spacecraft A and B, with masses m and M «
respectively, are moving along the same straight
line during an attempt to link up. There is a - O -
direct collision which occurs when the two B

spacecraft are approaching each other with speed
u, s shown in the figure on the right. The spacecraft fail to link up and after the collision
each moves

the opposite direction to it original motion. Spacecrafl A now hs a speed of 7
#) Draw diagrams indicating the velocities of A and B before and after the collision.

2
Show that after the collision the speed, v, of B is u( 2 — Lo
ow that after the collision the speed, v, of B is (W l) and explain why M>3
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@) Express Q in terms of P.

b) Show that the tension in BC is 2P and find the forces in BD and CD, in terms of P.

€) Which rods could be replaced by ropes and which could be removed, without disturbing the
equilibrium of the framework?

d) State the reaction force that acts on the framework at D, in terms of fand j.  (AEB 96)

35 A light framework ABCDE consists of seven light pin-jointed rods as shown in the figure

SR

¥

b
ABDE s 3 reciange od BOC s 3 eightangled riangle AD baslength a0

BC = 60°. A mass m is attached at C. The framework is suspended from A and
h\mgs in a vertical plane with AE being kept vertical by a horizontal force F applied at E.

0 Find the force F.
i) Find the magnitude and direction of the reaction at the point of suspension.
i) Find the forces in the rods AB, AE and BC.  (NICCEA)

36 A framework used for supporting loads is modelled
as five light rods AB, BC, CD, AD and DB freely
pin-jointed together. ABCD is a parallelogram with
AB 3

horizontal supports at A and B which are at the
same height. The framework supports vertical loads
0f 200N and 100N at the points D and C
respectively, as shown in the figure on the right.

i) Mark in all the external forces acting on the framework.
i) Show that the supports at A and B exert forces of 125N and 175N vertically upwards
respectively on the framework.

) Mark in ail the forces acting on cach of the pin-oints of the framework, including those
due o the internal forces in the rods.

i¥) Caleulate the magnitudes of the internal forces in the rods and state for each rod whether it
is in tension or compreson You may express your answers in terms of surds where
appropriate.




UNITS AND DIMEN

Units and dimensions
You need to be clear about the distinction between units and dimensions.

A unit of length, for example, is an arbitrary, agreed standard length. Other
lengths are then expressed as multiples of this unit. However, when calcul
area or a volume, it does not matter whether the lengths are measured in
centimetres, metres, feet or inches, as long as only one unit is employed. In the case
ofarea, we will always be multiplying a length by a length, and so the dimensions
of area will always be L. In the case of volume, we wil always be multiplying a
length by a length by a length, and the dimensions of volume will aways be L.

ing an

‘The dimensions of a quantity are, therefore, much more fundamental to its
nature than the units used to measure it

In practice, we use the SI units (Systéme International d"Unités). The three
base units which apply to mechanics are:
Mass  kilogram (kg)
Length. metr m)
second (s)

Notation
We use square brackets to refer to the dimensions of a quantity. so [force]
means ‘the dimensions of force’. Accordingly:

if his the height of a cylinder [ =

if mnis the mass of a ball-bearing ]

Compound or derived units

As already stated, all quantities in mechanics are defined in terms of the three
basic measures: mass, length and time. Their units often reflect their definition.
For example:

o Area is found by multiplying length by length:
[Area) = [Length] x [Length] = L*

‘The SI unit of area is 1 m?.

 Velocity is found by dividing length by time:
Length] + [Time] = LT
The SI unit of velocity is I ms™.

[Velocity] =

« Acccleration is found by dividing (change of) velocity by time:

[Acceleration] = [Velocity] + [Time] = LT

‘The ST unit of acceleration is 1 ms™

1ons
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o Force is found by multiplying mass by aceeleration:

[Foree] MLT?

‘We would be justified in calling the SI unit of force 1 kgms, but such an
important quantity merits a special unit name - the newton (N).
« Work is found by multiplying force by length:
[Work]

Again, rather than calling the unit of work 1 kgm? s
of work - the joule (J).

[Mass] x [Acceleration]

[Force] x [Length]

we have the SI unit

Dimensions in the calculus
Derivatives

The derivative :_ s the limit of the ratio 2% of small changes in the values of
x

the quantities y and x. Dimensionally, therefore, we have

For example, if v is velocity and x is displacement, we get

‘which gives

Care must be taken with second derivatives:

dJ')
‘ (h
is really —X2

&y
e
and so we have
o

ﬁ] &l _ )

) R S

For example, i a is acceleration and x is displacement, we get
& b

= la

"
ar w =
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Dimensions of constants

In the previous section, we saw that jc and e, the coeflicients of friction and
restitution, which are both constant in a given situation, are dimensionless. We
might be tempted to suppose that this extends to other such constants, but this
is not so. For example:

Modulus of elasticity (A) This appears in the formula

Tension

Natural length

As fextension] and [natural length) are both L, we have

) x L

It follows that 7 has the same dimensions as the tension force. That is,
)= MLT2
Gravitational constant (G) Newton’s law of gravitation states that the force of

attraction (F) between two bodies of mass m and m; placed a distance r apart
is given by

_ Gmm,
F= —

Putting in known dimensions, we have

1G] x M?
i

Dimensional consistency

We began this chapter by stating that zr? could represent an area, but that
362+ Sh could not represent anything sensible. This illustrates a general
idea:

In any equation or formula relating physical qummu.s, we cannot equate or
add terms which are not dimensionally the same. That

If a=b+c then [d)=

]

Confirming the dimensional consistency of any result we obtain is a useful
check on accuracy.
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If ¢ = Kpph, then we have

K] x o)  [pf

= LT = ML) x (ML7'T-3)?
o LT =M A LT

For dimensional consistency, the power of cach dimension on cither side
of the equation must be the same. Therefore, we hav

=2+ U]
3a-p @
B Bl
From (3], we get = 4. Subsituting

Checking these values in [2], we get
epm-3x(-h -4
So equation [2] is satisfied. The required formul:

5

therefore,

Kot or

Note
® We do not have sufficient information to decide the value of K.

@ As there were three equations and only two unknowns, it may have been
that no values of = and f would have satisfied all three equations. Had this
been the case, we would have known that our initial belief regarding the
nature of the formula was ill-founded. However, the fact that we could
satisfy alf three equations does not guarantee that that belief was correct,
although it is good evidence for it.

Example 3 When a body falls through the air, it experiences a retarding
force (air resistance), £, which, it is believed, depends upon the mass of
the bods, m, s velocy, » and s crosssectiontl area A. The following
formula is proposed

F=Kmvh A7

where K is a dimensionless constant. By considering the dimensional
consistency of the formula, find the values of «, § and 7, and hence write
down a possible formula.




FINDING A FORMULA

soumon
Fisaforce,so  [F]=MLT2
misamass,so  [m]=M
vis a velocity, so [v] = LT™"
Aisanarea,so  [4]=L*
If F= Km? v¥ A7, then we have

1A= (K)o (4]
% (LT)? x (L)
MG T

Equating the powers of the three dimensions, we obtain
m
@
Bl

1. A possible formula is,

Solving these cquations gives a = 1, f =2,
therefc

Kmv?

F=KmviA+ or F

Note
 The formula found in Example 3 is only a possible formula. It ignores some
factors, such as the density and viscosity of the air, which may well have a
bearing on the air resistance. It also excludes the possibility that the form of
the expression may be different, involving perhaps terms like 4.
To decide on the usefulness of our formula s a model for air resistance, we
would need to obtain experimental results. These would also be needed to
find the value of the constant K.
* When lysis, we have to solve
cquations. It ollows that t three
Variables, ofherwise we willnot beaim 8 unique soluton 1o the problem.
Even if we have only three variables, the equations we obtain may be
consistent and give no solution. On the other hand, they may have an
infinite number of different solutions. In these cases, our proposed formula
would clearly be inappropriate. Dimensional analysis, therefore, can tell us
when a possible formula is wrong, but it cannot tell us that a formula is
correct.




EXemcise 15

b) The highest point on a wall reachable by a projectile with initial speed u fired from a
distance a from the base of the wall is

w-gla
2gu

o) T patcey, asct o and g atecomgeced by s s g of gt/ and modlis
One particle s set in motion with velocity u. The maximum extension. x, reached by the
smng is

(The dimensions of  are those of a force).

9 The time nl‘osullunon T of  partce of mass m forming u simplc pendulum with a ight
string of length ieved to be given by a formula 7= Km*’ g7. Use dimensional analysis
to find the \zlnes of @ ﬂ and 7, and hence write down the possible formula.

10 The velocity, v, of waves on an ocean is believed to be related 10 the water density, p, the
wavelength, 2, of the waves, and g. Use dimensional analysis to find a possible formula for v.

11 Liquid flows through a pipe because there is a pressure difference between the ends of the pipe.
“The rate of flow, ¥'ms-", depends upon this pressure difference, p N2, the viscosity of the
liquid, nkgm~" s~ the length of the pipe, /m, and the radius of the pipe, rm.

a) Explain why it would be impossible to consider as a formula ¥ = Kn*rf p7 1%,

b) It is decided that the important thing is the pressure gradient p//. Use dimensional analysis
t0 obtain a possible formula relating the velocity. ¥’ to the viscosity of the liquid, the radius
of the pipe and the pressure gradient.




16 Circular motion

Round and round in cicles
Completing the charm.

Circular motion is a significant aspect of motion in two dimensions. Many
objects move in a circular path: for example, a car on a roundabout, a
pendulum on a clock or a sock in a spin dryer.

Linear and angular speed

‘We can describe the motion of a particle travelling in a
dislacement,specd and acesleraion along the ac of th circle. However, it s
often more appropriate 1o describe it in terms of the angle subtended at the
centre of the circle by s path.

e in terms of its

For example, consider points A and B on an old vinyl record revolving on a
turntable at 33 revolutions per minute (the preferred abbreviation for which is
revmin~, although rpm is more widely used). Suppose that A is Scm and B is
10cm from the centre of the disc.
In | minute: A travels 33 x 27 x 0.05 = 10.367m
B travels 33 x 2r x 0.10 = 20.735m
= Speed of A = 10367 + 60 = 0.173ms"!

‘This means that points on the disc have different linear speeds depending on
their distance from the centre. To describe the rate at which the disc is
rotating, it i better to consider its angle of rotation.

I  rotationth disctums tough a ange of 25 radians.

Therefore, the angular speed of the disc is

667+ 60 = 1.1 7 radians per second (written 1.1 zrads

Angular displacement, speed and acceleration

‘The angular displacement, 0, of a particle P is the angle in radians rotated by
the radius OP from some reference position (usually the position when time s
zer0). We could in theory use degrees, but, because we wish to use calculus
methods, in practice we always use radians.



RELATION BETWEEN LINEAR AND ANGULAR MEASURES

The rate of change of the angular displacement gives the
angular speed (in rad s™). This is usually denoted by . P Tine:
Thus we have

[

time 1 =0

mernsiones, the dimensionsof angulr speedare T~ .,

Note that, as angle i
and of angular acceleration are T

Relation between linear and angular measures
Ifa particle travels along the arc shown in the diagram above right, it defines a
sector with angle 6, radius r and arc length s. We know that

s=r0

As ris constant, differentiating this formula gives

If the speed of the particle is v, this becomes.

v=rl or v=ro
Differentiating again gives the relation between the linear and angular
accelerations:

dv

Example 1 A particle travels round the circumference of a circle of radius
6m at a rate of 30revmin~'. Find a) its angular speed in rads™! and
b) its linear speed around the circle.
soumon
#) One revolution = 2rrad
The particle has angular speed 27 x 30 = 60 rad min™"
60n+ 60 = mrads™
b) Using v = ri, we have

v=6x7=6zms" or 1885ms™
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Acceleration

From equations [1] and [3], we can see that

[ a=-ofr

The acceleration therefore acts in the opposite direction 10 r. Since r is directed
away from the eentre of the circle, it follows that the aceeleration acts towards
the centre of the circle, whatever the position of P on the circle.

We also have

[ -

Since  and r are constants, the magnitude of the acceleration s constant, but
its direction is constantly changing.

la) = |-w?|

ra? @

‘We can obtain an alternative form of the expression for the magnitude of the
aceeleration as follows:

v
verw = w=Y
¥

Substituting for o in equation [4], we get

[ =

Summary

For a particle moving in a circle of radius r with uniform angular
speed

» The velocity is tangential 10 the circle.

® The specd around the circle, ¥ = ro.
 The acceloration acts towards the centre of the circle.

 The magnitude of the aceeleration s o or

Exercise 16B

1 Find the magnitude of the acceleration of a particle travelling

a) around a circle of radius 2.5m at a uniform speed of §m s~
b) around a us 4.2m with uniform angular velocity 3rads™"
©) around a circle of diameter 2.6m at a constant 12 rev mi
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2 The Earth rotates once in every 24 hours (approximately). Its radius is approximately 6400 km.
a) Find the angular speed of the Earth in radss~!
) Find the acceleration of a person standing on the Equator.
©) At what latitude would a person be standing if the person’s acceleration were 0.02ms=?
@) What would be the direction of the acceleration of the person in part ¢’

3 The Earth orbits the Sun once every 365 days (approximately). Assuming that its orbit is
circular, with a radius of 1.49 x 10°km, find its aceeleration.

4 A car is travelling round a roundabout of radius 10m with a uniform speed of 6m s

) Find its angular specd, o

b) Taking the centre of the roundabout as the origin, the car is initially at the point
position vector 10i and is moving in an anticlockwise direction. Find an expression for the
position vector, . of the car at time 1.

©) Differentiate the position vector to find expressions for the velocity and acceleration vectors
of the car.

5 A boy is swinging a conker so that it moves in a horizontal circle above his head with uniform
peed. At time 1, the position veetor of the conker is given by

£ =(03c0s 107§ +0.35in 10/j)m

#) Find the acceleration veetor of the conker.
b) Find the magnitude of the conker’s acceleration.
) When 1 = 105, the boy releases the string, What s the velocity vector of the conker at this time?

Mechanics of circular motion

We have established that when a body is travelling in a circle of radius r with
uniform speed , it has an acceleration of magnitude -, or ro?, towards the

centre of the circle, where @ is the uniform angular speed.

We have also stated that, as a consequence of Newton's second law, there must
be a force acting to cause the acceleration. A body on which no force acts will

move in a straight line. Indeed, if a body travelling in a circle suddenly has the

accelerating force removed (such as when a conker string breaks), the body will
move along the tangent at that point.

In solving a practical problem. we need to identify all the forces acting and
then write down the equation of motion. Because the acceleration acts towards
the centre of the circle, it must be in the plane of the cicle. There can be o
acceleration perpendicular to this plane.

We will continue to make the modelling assumption that speed is niform and
that the bodies involved are pa . the mass of a body is considered
as though it is coneentrated at a single point.
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Example 2 A particle of mass 3 kg is attached t0 a light, inextensible
string of I:ng!h 2m, which is fastened to a point on a smooth table. The
particle is set in motion in such a way that it describes circles around the
fixed point with a speed of 6ms~". Find the tension in the string.

soumon

For the motion described to be possible, the string must be taut. The
radius of the circle is therefore 2

There is no acceleration vertically and the tension has no vertical
component.

View fromsboe
The reaction R is 3g N. We only need consider the equation of motion for

the horizontal direction.

2
“The acceleration towards the centre of the circle is = = - = 18ms ™

)
Resolving in the direction PO and using Force = Mass x Acceleration,
we have

T=3x1

=54N

So, the tension in the string is S4N.

Example 3 Two particles, each of mass kg, are attached to the ends of
a light, inextensible string which passes through a hole in a smooth table.
One particle moves in a circular path of radius rm around the hole, so
that the string is taut. The other particle hangs frely. What is the speed
of the particle on the table?

sownon

Particle P is moving in a circular path and Q is stationary.
The tension is the same throughout the string.
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Resolving vertically for Q, we have

T-mg=0

= T=mg m

P has no acceleration vertically, so we only need consider its equation of

‘motion horizontally.
2

‘The acceleration of P is - towards O.

Resolving for P along PO, we have

T=m® @
r

Substituting for T from [1] into [2], we have

r
o= v=JE

S0, the velocity of the particle P is /7 ms

Note Example 3 is a classic problem and the situation could not be achieved in
practice. Friction between the particle and the table, and between the string
and the edge of the hole, have been ignored. We have also ignored the
tendency for the string to wind or unwind as the particle moves round the
hole.

Example 4 A particle of mass m is placed on a rough horizontal turntable
ata distance of 0.4m from its centre, O. The coeflicient of friction
between the particle and the turntable is is the maximum angular
speed at which the turntable can move if the particle is not to slide?

o
=1

N

& vertically, we get
R-mg=0 = R=mg m

If the particle s on the point of sliding, we have

F=1iR
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Problems involving non-horizontal forces

In all the situations we have examined so far, the forces causing the
acceleration towards the centre of the circle have been horizontal. There arc

situations where a body travels in a horizontal circle but where the
constraining force has a vertical component.

Conical pendulum

‘The term “conical pendulum’ refers 1o the situation in which a body is
attached by a string to a fixed point, and travels in a horizontal circle below
that point. We usually make the modelling assumptions that the string is
light and inextensible, that the body s a particle and that air resistance can
be neglected.

Example 6 A pendulum bob, P, of mass 4kg, hangs at the end of a light,
inextensible string of length Sm. The other end of the string s fixed to a
point O. The bob is made to describe a horizontal circle of radius 3m
with uniform specd. Find the tension in the string and the angular speed
of the bob.

soumon

By Pythagoras’ theorem, we can see that the circle is 4m below
point O. Hence, if 0 is the angle between the string and the
horizontal, we have

cosh=3 and sind

5

Let the tension in the string be 7N and the angular speed be

The bob has zero vertical acceleration, and an acceleration of
ro = 3% towards the centre of the circle.

Resolving vertically, we have

Tsin0—4g =0
= 4T=4g
= T=5gN=#HN m

So the tension in the string is 49N.

Resolving towards the centre of the circle, we have
Tcos0 =4 x 3u?
=47
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Substituting from [1], we have
w?=245
> w=157rds"
So, the angular speed of the bob is 1.57 rad ™"

Example 7 A mass of 3kg s attached to the mid-point, P, of a light,
inextensible string AB of leagth 4m. The ends A and B are attached to
two fixed points, with A a distance 2m vertically above B. The mass
travels in a horizontal circle with angular speed o, so that both parts of
the string are taut. Find the minimum value of o.
soumon

APB is an equilateral triangle, so m‘lfc APOs 30°
and the radius, OP. of the circle is v3m.

‘The tensions in the strings AP and PB are T, and
T; respectively.

‘The mass has zero acceleration vertically. So,
resolving vertically, we have
7y5in30° — Tysin30° - 3g =0
= Ti-Ti=6 U]

‘The acceleration towards the centre of the circle is ro? = V3. So,
resolving towards O, we have

Tyc0s30° + Tyc0s30° = Jo*v3
= Ti+Ty=60* @
Subtracting [1] from (2}, we get
27 = 60 - g)

If the portion PB of the string is 1o be taut, 7> must be positive (or zero if
it is just going slack). Therefore, we have

Grg > 0> Eads!

So, the minimum value of o is \/ rads~".
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Example 8 A light, inextensible string, of length 0.72m,
is attached to two points A and B, where A is vertically
above B and AB = 0.48m. A smooth ring, P, of mass
0.05kg, is threaded on the string and is made to move in
4 horizontal circle about B, Find the angular speed of
the ring and the tension in the string. Take g = 9.8 ms~,

Because the ring can move freely on the string, the
tension in both portions of the string s the same.

We know
AP+ PB=0.72 m
By Pythagoras’ theorem, we have
AP - PB? = 0.2304
= (AP+PB)AP—PB) =0.2304

Substituting from 1), we get
0.72(AP -~ PB) = 02304
= AP-PB=032 [¢]
Adding [1] and [2), we get
24P

04 = AP=052m and PB=02m
1f 0 s the angle APB, then we have

Vertically, the acceleration is zero. So, resolving vertically, we have
Tsinf = 0.05g

12
JZ=053IN
3

‘The acceleration towards the centre, B, is 0.2, So, resolving towards B,
we have

= T=005+

T+ Tcos =005 x 0.2
T+
005x02
Substituting for T. we get

= o=

@=735 = o=85Trds’

So, the tension is 0.531 N and the angular speed is 8.57 rad s~
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Banked curves

Many racing tracks have their curved sections banked. This enables the cars to
travel more quickly round the curves and still be safe. The same principle is
also applied on some railway tracks and public roads. However, ther s a
potential danger in that a vehicle travelling at 100 slow a speed may be unable
10 stay on a very steeply banked track.

reason banking is an advantage is that the normal reaction between the
vehicle and the track has a horizontal component when the track is banked.
“This component helps to provide the central force needed to keep the vehicle
travelling in a circle.

Example 8 A car is travelling round a circular bend of radius 30m. The
coefficient of friction between the car and the road is 0.3. The car has a
mass of 600 kg
) What is the maximum safe speed for the car if
) the road is unbanked
1) the road is banked at 20° to the horizontal?
b) What is the minimum possible speed of the car if the road is banked at
2077

soumon
) 1) In the diagram, the centre of the bend is towards
the left.

There i 1o vertical aosertion. o, resoling .

vertically, we
R-600g=0 = R=600g

When the car is on the point of slipping, we have anx
F=03R=180g m

Let the speed of the car be yms™'. ;l'hml'am. the acceleration

towards the centre of the circleis 1o s>, So, resoling towards
the centre, we have
Fog0x s
30
Substituting from [1], we get

180g = 201
= V=9 = v=939ms!

So, the maximum safe speed is 9.39ms~!, or 3.8kmh!.
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) The forces acting on the car in this situation are
shown in the diagram. If the car is travelling at
maximum speed, it will tend to slip up the slope,
50 the friction force must act down the slope.

When the car is about to slip, £=0.3R.

‘There is no vertical acceleration. So, resolving
vertically, we have

Reos20° ~ Fsin20° ~ 600g = 0
= R(cos20° — 0.35in20°) = 600g 6]

As before, the acceleration towards the centre of the circle %.
Resolving towards the centre of the circle, we have
»
E)
= R(sin20°+0.3¢0520°) = 20¢* Bl
Dividing [3) by [2], we get
2 _ sin20°+0.3c0520°
30 cos20° = 035in20°
S 2=21903 = v=148ms
wation is 14.8 ms™", or $33km b

Rsin20° + Foos 20°

600 x

So, the maximum speed in this

b) 1T the car is travelling slowly, its tendency i 1o slip
down the slope. so the friction force acts up the
slope, as shown.

Resolving vertically, we have
Reos20° + Fsin 20° — 600
= R(os20°+03sin20°) = 600g  [4]

Resolving towards the centre of the circle, we have

Rsin20°

Feos20° = 600 x £
c0s20° = 600 x 35

= RGin20° - 0.3c0s20) = 204 15l
Dividing [5] by [4]. we get
#_sin20° ~ 0.3c0s20°
30g ~ cos20° +03sin20°
= =169 = v=dl2ms!

So, the minimum safe speed is 4.12ms"!, or 148 kmh-!
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Note When a train goes round a curve, the sideways force needed to keep it
on the track is provided by the flanges on the wheels. There is very little
friction force to assist in this. Banking is introduced to minimise this sideways
force.

Example10 A railway track has a curve with radius 600m. At what angle
should the track be banked so that a train travelling at 30m s~ has no
sideways reaction between the wheel flanges and the track?

soumon

When there is n0 sideways force between the wheels and
the track, there are only two forees acting on the trai
its weight, mg, and the normal reaction, R, as shown.

There is no vertical acceleration. So, resolving vertically,
we have

Reos0—mg=0

= Rcosf=mg m

The acceleration towards the centre of the circle is % = Lsms?

Resolving towards the centre of the circle, we have
Sm 2
Dividing (2] by [1]. we get

Rsinf =

tang =0153 = 0=87

So, the track must be banked at 8.7° to the horizontal

Exercise 16D

1 A ball of mass 3 kg is fastened to one end of a rope of length 0.5 m. The other end of the rope
is fixed and the ball rotates as a conical pendulum at a rate of Srads
) How far below the fixed end of the rope is the centre of the circle traced out by the ball?
b) What assumptions have you made in forming your solution to the problem?

2 A particle moves as a conical pendulum at the end of 4 light, inextensible string of length
40cm. IF the string makes an angle of 30° with the horizontal, find the angular speed of the
particle.

3 A mass of 0.5 kg, suspended by a light, inextensible string of length 1.5m,
pendulum at 30 rey min-

revolves as a conical
Find the radius of the circle it travels and the tension
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‘o The speed of the particle s [v| =
This corresponds to » = r, which we used for circular motion with uniform
speed, but here 0 is not constant.

20(~sin 0cos 0 + sin fcos 6) = 0

.y

‘This means that the velocity is perpendicular to the radius. In other words,
the velocity is tangential to the circle.

We now differentiate [2] to obtain the acceleration vector, a. We need 10 use
the product rule:

%(fsmﬂi +:osoj)+,9(_$ | dlcusﬂ)l)

dr
1d(—sin 0 + cos 0) ~ ri’(cos i + sin B)

Now, (cos 0i +sin ) is a unit vector in the direction of r. So, we have

(cos0i + sinbj) =

vector in the direction of v, and so

ilarly, (—sin 01+ cos 0]) is a ui
tangential to the circle. Let us write

(=sin0i +cos 0

We can then write the acceleration vector as

P Bl

From [3] we get two important facts:

 The particle has a tangential component of acceleration of il

® The particle has a radial component of acceleration of —r(”. This is directed
towards the centre of the circle and corresponds to the ras? which we used for
circular motion with uniform speed, but here i is not constant.

Motion in a vertical circle

A common example of circular motion with non-uniform speed is when a
body is moving in a vertical circle. This occurs in many sircumanecs
Typically, a body may be rotating on the end of a string or rod, may be
thraded anto 2 hoop of may be siding on the ianer of ower surface of
circular object. In all cases, the path may be a complete circle, or just a

a

“The situations listed can be divided into two categories. In the firs, the body
cannot leave the circular path. In the second, the body may leave the circular
path at some stage of its motion.
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The body cannot leave the circle

‘This includes bodies rotating on the end of rigid rods and beads threaded onto
hoops. Such systems can behave in one of two ways:

© If the energy of the system is sulficient, the body rotates in a complete
circle.

o If the energy is insuflicient, the body cannot reach the highest point of the
circle, but oscillates between two symmetrical positions, at each of which its
speed is instantancously zero, as shown.

The body can leave the circle

“This includes bodies rotating on the end of strings, or sliding on the surface of
cireular objects. Except for the case of a body sliding on the outer surface of a
circular object, which is bound to leave the circle at some point, such systems
can behave in any of three ways.

o If the energy of the system is sufficient, the body rotates in a complete circle

o If the encrgy of the system is so low that the body cannot rise beyond
the level of the centre of the circle, it osc.umes between two
symmetrical positions, at each of instantaneously
2ero, as shown

« If the energy of the system is such that the body can risc above the level of
the centre of the circle without being cnough to carry it completely round
the circle, it will leave the circle at some point and its motion will become
that of a projectile, as shown.

‘The mechanics of motion in a vertical circle

When modeling moton n o vediclcirle, we will make he ollowing

assumptios

¢ Thebodyisa patle.

 There is no air res

+ There i no o of energy through any othe ressance.

 If the particle is attached to a string o is light and inextensible.

= The path i  perfctcrle. This ssompuon s fien made when modeling
situations such as roller-coaster loop-the-loops, in which the entry and exit
paths do not coincide, but where the car travels in something very close (0 a

In most problems concerning motion in a vertical circle, we make use of the
principle of conservation of energy.
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b) If the rod is replaced by a string, the energy equation (1] still applies.
However, the speed, v, of the bob when it reaches the top must be
great enough for the string to remain taut. In other words, if T'is the
tension in the string, then 7 > 0.

AUB, the acceleration of the bob towards the centre of the P 8
circle is v/2. So, resolving in the direction BO, we have

K
T+30=3x3

As T2 0, we have

3L>3n = 220 &)

Substituting from [2] into 1], we get
15073 1.5 x 20+ 120
w2100 = u>10m

So, for a string, the initial speed of the bob should be at least
10ms™

Example 14 A particle of mass 0.01 kg rests at the top of a smooth spherc
of radius 0.2m which i fixed to a horizontal table. It s displaced slightly
5o that it slides off the sphere. How far from the point of contact between
the sphere and the table does the parice strike the wble? Take
£=98ms"

sowmon
There are two stages to the motion of the particle. In the first A ®
stage, the particle slides down the outside of the sphere. At
some point it leaves the surface. leading to the second stage
in which the particle moves as a projectile.

D
We need to find the position of the particle and its velocity

at the point where it leaves the surface. This will provide

the initial conditions for the projectile motion.

The particle will leave the surface at the point where the P

reaction between the particle and the surface becomes zero.
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At point A, we have
Kinetic energy = 0
Potential energy = 0.01 x g x 0.2 = 0.002¢

Ata general point, P, we have

Kinetic energy = 4 x 0.01 x ¥* = 0.005v*
Potential encrgy = 0.01 x g x 0.2050
=0.002gcos0

Energy is conserved, so we have
0,005 +0.002g cos 0 = 0.002¢
.4g(1 ~ cos ) m

=

‘The acceleration towards the centre of the circle is l;—; =50l
So. resolving in the direction PO, we have
001 gcos0— R =001 x 5v*
= .2gc030~20R

When R = 0, we bave

0.2gcos 6]
From [1] and [2], we have

= =482

1.143ms~!

‘The projectile stage of the motion starts as shown in

the diagra R .

‘The distance BC = 0.2(1 +cos48.2°) =4 m y Liimst
o

‘The vertical component nl‘ the initial velocty is

1.1435in48.2° = 0.852m. o2n)

Using s = ut + far®, the particle reaches the table at L

time 7, where ©

1= 0852+ dgr?
= 497 +0852 -1 =0

Solving this quadratic equation, we get ¢ = 0,188 (or —0.3625).
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"he horzonta component o the il velociy s
1.143cos48.2° = 0.762m

0.188=0.143m
eft the sphere.

In 01885, the particle travels 0.762
horizontally from the point wherg

As BP = 0.25in48.2° = 0.149m, the particle lands
0.149 4 0.143 = 0.292m from C.

Exercise 16E

1 A pendulum consists of a rod of length I m with a bob of mass 2 kg attached to one end. The
rod is freely pivoted at the other end, O, so that it can rotate in a vertical circle. The pendulum
rests with the bob vertically below O. The bob i then given an impulsc so that it starts to
move with speed 6.5 ms-". Assuming that the rod is light and that the bob can be modelled as
a particle, what is
a) the speed of the bob
b) the force in the rod
when the pendulum makes an angle of §) 30, 1) 90° and i) 150° with the downward
vertical?

2 A particle of mass 0.1 kg is attached by a string of length 1.5m t0 a fixed point, and is made to
travel in a vertical circle about that point.

) Find the minimum velocity the particle must have at the lowest point of the circle if it s to
make complete revolutions.
b) For this velocity, find
) the tension in the string when the particle is at point A, a di
lowest
) the tangential component of the particle’s acceleration when it is at point A.

ince of 75cm above the

3 A particle of mass 0.01 kg is placed on the topmost point, A, of a smooth sphere of centre O
and radius 0.5 m. It s slightly displaced. When it reaches point B it is about to lcave the
surface of the sphere. Calculate the angle AOB.

4 A particle of mass i hangs at rest, suspended from a point, O, by a light, inextensible string of
length a. The particle receives an impulse so that it starts moving with speed v/3ga. the
angle between the string and the vertical when it goes slack.

5 A stone of mass 0.5kg performs complete revolutions in a vertical circle on the end of a light,
inextensible string of length 1 m. Show that the string must be strong enough to support a
tension of at least 29.4N.

6 A particle of mass m travels in complete vertical circles on the end of a light, inextensible string
of length a. IF the maximum tension in the string is thre times the minimum tension, find the
speed of the particle as it passes through the lowest point on the circle.
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7 A pendulum of length a has a bob of mass m. The speed of the bob at the lowest point of its
path is U. Find the condition which U must satisfy for the bob to make complete revolutions if
the pendulum consists of a) a rod, b) a string.

8 A particle of mass m is pnuegwd horizontally with speed v from the topmost point, A, of a
sphere of radius a and centre O. It remains in contact with the sphere until leaving the surface
at point B. If angle AOB is zv L find v

9 A particle of mass 2kg is attached o the end of a light,
inextensible string of length 1 m, the other end of which is
attached 1o 4 fixed point, O. The particle is held with the
string taut and horizontal, and is released from rest. When
the string reaches the vertical position, it meets a fixed pin,
A, a distance x below O. Given that the particle just completes B
a circle about A, find the value of x. X

0 A bead of mass m is threaded onto a smooth, circular hoop of radius a, which is fixed in a
vertical plane. The bead is displaced from rest at the top of the hoop. Find the resultant
acceleration of the bead when it has reached a point which is a vertical distance ;‘a below its
starting point

11 A body of mass 40kg is swinging on the end of a light rope of length 3m, which is attached to
a fixed point 3.6m above horizontal ground. The body moves so that at the extreme positions
of its motion, the rope makes an angle of 60° with the downward vertical through O. At an
instant when the pendulum makes an angle of 30° with the downward vertical through O and
the body is rising, the body breaks free from the rope. Caleulate the horizontal displacement of
the body from O at the point where it hits the ground.

B

A smooth wire forms a circular hoop of radius I m. It s fixed in a vertical plane. Two beads, A

and B, of masses 7 and 2m respectively, are threaded onto the wire. The coeflicient of

restitution between the beads is 0.5, Bead B rests at the bottom of the hoop. Bead A is

projected from the topmost point with speed u, and subsequently collides with B.

a) Show that bead A is brought 10 rest by the collision.

b) Find the value of u, given that the collision imparts just enough speed to bead B for it lo
mplete revolution.

©) Investigate whether bead A makes a complete revolution after the second collision.

a

A pendulum bob of mass 1 is fastened to one end of a string of length r whose other end is
fixed at a point O. The bob s at rest in its lowest position when it is set in motion with
initial

speed As it swings upwards, the string meets a small, fixed peg, P, on the same level as

©. The string then wraps round P. What is the closest that P can be to O 5o that the bob make
a complete revolution about P?
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(As an alternative, you could use a force-meter or spring balance to measure
the tension in the spring. In this case, it may be more convenient to carry out
the experiment on a flat surface.)

“Tabulate your results as shown and draw a scatter graph of length against
tension. If you have access 10 the spreadsheet ELASTIC, you can enter your data
there. The spreadsheet is on the OUP website: hitp://www.oup.co.uk/mechanics

‘You should notice that the graph you obtain is approximately lincar. The
spreadsheet draws a scatter graph and a line of best fi, as shown.

Suspended mass (kg) “Tension (N) Length (m)
0.000 0.000 0.170
0.020 0.196 0.194
0.040 0.392 0.229
0.060 0.588 0278
0.080 0.784 0328
0.100 0.980 0.386
0.120 1.176 0.439
0.140 13712 0.491
0.160 1.568 0.550
—— e
+
.
fl H //‘
.
M %

ent 1, but replace (he spring with a piece of elastic, or with a
bands “chained” together. The table and graphs shown
illustrate the results obtained by lhe Bmhor
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You will probably find that the graph is less obviously lincar in this situation,

Tow tensions, the graph is usually approximately linear, but departs from
this as the tension becomes larger. The spreadsheet draws a scattergraph and
the line of best fit for the first six points.

‘Suspended mass (kg) “Tension (N) Length (m)
0.000 0.000 0.265
0.020 0.196 0.285
0.040 0.392 0312
0.060 0.588 0.347
0.080 0.784 0.390
0.100 0.980 0.446
0.120 1.176 0.510
0.140 1372 0.585
0.160 1.568 0.665
et et i T v i e
" .
.
H . T
H - t
0 *+ hd
*
0 05 1 15 “ 05 1 15
im0 sy

« a
angsof materials More sophisticated equipment can beused toshow that when,
for example, a steel hed, the graph of i

is linear. Thisis true up to a certain point, called the elasti limit. A wire stretched
beyond thispoint loss tscstcty and cannot regain s natural ength.

Interpretation

From out experimental results, particularly for Experiment 1, therc appears to
be a linear relation between the length of the spring, /, and the tension, T.
Obviously, if the tension is zero, the length is the unstretched, or natural

I,. The relationship can therefor be written as
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Notice that (/ - £,) is the extension produced in the spring.

“This is the usual model adopted for elastic strings and springs. That is, there is
alinear relation between the tension in the string or spring and the extension

uced. This model is known as Hooke’s law, after Robert Hooke, who
formulated it in 1678, The model is represented by the equation

T=kx

where T is the magnitude of the tension
x is the extension from the natural length of the string or spring
ks a constant for a given string or spring, and is called the stiffness.

‘The main assumption embodied in the model is that the spring or string is light.
“This is clearly reasonable for most strings but a spring probably has a significant
‘mass. In fact, if you suspend a spring without a load, you can probably sce that
the gaps between the coils are greater near the top of the spring, because there is &
greater mass of spring below this point than near the bottom. This would have
had an effect on your results if your experimental design involved suspending the
spring and hanging a load on the end. If, on the other hand. you used a force-
‘meter with the spring on a hotizontal surface, the mass of the spring would not
have affected your resultsin the same way. Itis, however, possible that friction
between the coils of the spring and the surface would have had an effect.

Compressing a spring

Springs differ from strings in that they can be compressed. In this case, w
have a reduction. x, in the length (a negative extension) and a thrust force (a
negative tension) in the spring. It can be shown experimentally that Hooke's
law continues to be appropriate.

In practice, there is a limit to the amount by which a spring may be compressed, as

eventually the coils touch. Our mathematical model, however, would allow the
ossibility of compressing the spring until its length was zero or even negative. Itis

important, therefore, that we check that the predictions of the model are realistic.

Units
From the modelling equation 7 = kx, we obtain
k=T
¥

As a result of this, the SI unit for stiffness, k, is the newton per metre (Nm™").
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Example 3 A ball of mass 4kg is fastened to two springs whose natural
Iengths are 1 m and 0.5m. The other end of the first spring is fastened o a
point, A, and the other end of the sccond spring to a point B, a distance
of 3m vertically below A. The ball rests in cquilibrium. The stiffness of
the springs is 30Nm"! and 20Nm"! respectively. Find the lengths of the
springs. Take g = 10m s~

sownon
Assume that the spring AM is extended a distance xm, so that its new
length is (1 + x)m.

The new length of spring BM is then 3 — (1 +x) = 2 - )m

The extension of spring BM is then (2~ x) = 0.5 = (L5 — Y)m

Let the tensions in the springs be T; and T3, as shown in the diagram.
By Hooke's law, we have

7y=30x and T:=20015-2)
The ball s in equilibrium. Resolving vertically, we have
Ti-T:-40=0

= 30x-20(15-x) - 40=0
= S0x-70=0
= x=14

So, the spring AM is 24m long and the spring BM is 0.6m long.

Exercise 17A

1 #) A ball of mass 4kg is attached 10 one end of an elastic string whose other end is attached to
the ceiling. The string has a natural length of I m and a stiffness of 32N'm~! What is the
stretched length of the string when the ball hangs at rest?

9 A second,idencal, claste ting i fstene betwcen the ball and the et castcsting.
‘What will now be the distance below the ceiling at which the ball will hang

2 A spring of natural length 0.9:m is compressed by a force of 40N to a length of 0.7m.
) What is the stiffress of the spring?
b) IFit were stretched by the same force, how long would it be?

3 A spring is stretched by a force of 36N to a length of 1.2m. When it is comprtssed by a force
of 24N, its length is 0.6 m. What are the natural length and stiffess of the spriny

4 o A block of mass 2kg i atachedto e end of an clsic slnng of length 1 m and siffness
. The other end of the string is fastened to the cei and the block is lowered until
h Hangs at et What 5 the ength of the strng n this posiion”




CHAPTER 17 ELASTICITY

b) A second elastic string is attached 10 the same point on the block and on the ceiling. This
second ing s  naturallngth of 0.8m and a s of 10Nm . The block is again
allowed to hang at
) How far below e mnng does the block now hang?

) What are the tensions in the strings’

5 A ball M of mass Skg is attached to the ends of two springs whose other ends are fixed to
points A and B, with A 4m vertically above B. Spring AM has natural length 2m and stiffness
S0Nm-". Spring BM has natural length 1 m and stiffness 20 Nm-". The ball rests in its
equilibrium position. What are the lengths of the springs?

6 A block of mass Skg is attached 10 one end of an elastic string of natural length 2m and
stifness 40N m' 1. The other end of the strin is attached 10 a ixed point. The block is allowed
to hang at rest and is then pulled aside by a horizontal force of 30N. Taking £ to be 10m s
find the stretched length of the string.
7 A block of mass 3kg rests on a smooth plane which is inclined at 40° 10 the horizontal. The

block is attached t0 a point at the top of the plane by means of an elastic sring of natural
length 1.6m and stiffess 30Nm~". Find the stretched length of the string.

8 A block of mass 2kg rests on a rough plane which is inclined at 30° to the horizontal. The
block is attached to a point at the top of the plane by means of an elastic string of natural
length 2m and stiffness 50N m-". The coefficient of friction between the block and the plane is
0.25. Find the distance between the lowest and highest positions in which the block will rest in
equilibrium.

9 Each of the diagrams shows a compound spring made from identical springs each having
stiffness . In each casc, find in terms of k the stiffness of the single spring which would be
equivalent to the compound spring.

10 Springs AB and BC are connected 1o a block B of mass m. The springs both have stiffness k.
The natural length of spring AB is 3/ and of BC is /. The ends A and C are fastened to points a
distance 4/ apart on a rough horizontal plane. The coeflicient of friction between the block and
the plane is . The block can just rest in limiting equilibrium at the mid-point of AC.

) Find an expression for k in terms of m, g, / and p.
b) Find the position of the other point on the line AC at which the block would be in limiting

equilibrium.
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11 Two identical elastic strings, of stiffess 25N'm~! and natural length 1.5m, are fastened to a
block of mass 2kg. The other end of one string is fastencd to a beam and the other end to the
floor, Sm below the beam.

) Find the lengths of the strings when the block hangs in equilibrium.
b) I the beam is now gradually lowered, how far above the floor will it be when the lower
string becomes slack?

12 A block of mass m is attached by an elastic string of stiffness & to a point, O, on a smooth
horizontal plane. The block is travelling in a horizontal circle about O. Find the angular speed of
the block in terms of m and k if the radius of the circle is twice the natural length of the string.

Other ways of expressing the linear model

So far, we have expressed Hooke's law by using the equation T = kx. The
stiffness, &, is a property of the particular spring or picce of string. Springs and
strings which are identical except for their lengths have different stffnesses, as
you saw in Question 8b of Exercise 17A.

‘There are two ways in which Hooke's law can be expressed so that it is not

tied 50 closely to the particular spring or string. These make use respectively of
the modulus of elasticity and Young’s modulus.

Modulus of elasticity

‘The modulus of clasticity, 7, provides a measurc of the elastic strength of a spring
or string which does not depend upon its length. It is constant for strings of the
same material and cross-section, and for springs of the same construction,
regardless of their length. Using , the model for tension T'is expressed as

where x is the extension and / s the natural length of the spring or string.

“The modulus of elastiity, 4, and the stffness, k, are related by = kI,
A the SFusit for k3 the neton per e (Nm~1), it follows that the SI unit
the newton (N). In fuct, /. corresponds to the tension in the string when
|| is s(mlchml 10 exactly twice its natural length.

Young’s modulus

‘The modulus of elasticity, 7, is different for strings which are made of the same
material but which have different cross-sectional areas. A string which has
cross-sectional area 24 is twice as stiff as one with a cross-sectional area A
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(analogous to the springs in Question 8a of Exercise 17A). To take account of
this, we can use Young's modulus, £, which s related to 2 by

E=
A
Hooke's law is then expressed as
T EAx

1

“This only applies to strings. Young's modulus is a property of the material
from which the string is made. The SI unit for E is the newton per square
metre (Nm™)

‘The equation for 7'in this form only represents a straight line provided we can
regard A as constant. In fact, as a string stretches, it becomes thinner, and so
s a function of x. This gives us some insight into why our experimental
results on p. 372 showed that the linear model became less appropriate for
larger extensions of an elastic string.

You will not meet Young's modulus in mathematics examinations, though you
may encounter it in physics or engincering.

Problems expressed in terms of the modulus of elasticity, 4, are solved in
exactly the same way as those using the stiffness, k. The only difference s in
the form of the modelling equation for the tension or compression force.

3 Example 4 An elastic string of length 2m and modulus of elasticity 50N

has a block of mass 3kg unnched 10 one end. The other end is fastened to
a hook and the block is low o its rium position. If
572, what is the Irl\glh of the string in this position?

£

As the block is in equilibrium, the tension must equal the weight of the
block. So, we have

T=3xg=30N
In the Hooke's law equation T 50 and /=2, which
give

30=3 & coiom

So, the total length of the string is 2 +



OTHER WAYS OF EXPRESSING THE LINEAR MODEL

Example 5 Two springs, each of natural length 0.1 m and modulus of
elasticity AN, are fastencd at one end to a block, M, of weight 30N. The
other ends are fastened to two hooks, A and B, fixed to the ceiling and
0.16m apart. The block is lowered unti it rests in equilibrium at a
distance 0.15m below the ceiling. Calculate the value of 7.
souwnon
By symmetry, the tensions in the springs are equal.
‘We can find the stretched length of the springs by using
Pythagoras’ theorem on the triangle ACM, which gives
AM? =008 +0.15°
= AM=017m

If the springs are inclined at angle 6 to the vertical, as
shown, we have

cos0 =215 15
0.1 I
Resolving vertically, we have
2Tcosf—30=0
15
= 2Tx it

‘The natural length of the spring is 0.1 m. Its stretehed length is 0.17m, so
the extension is 0.07m.

0 =T=17N

The Hooke's law equation 7= % then gives

i % 0.07
01

=2429N (t02dp)

1 A block of mass 4kg is attached to one end of an elastic string whose other end is fixed to the
ceiling. The string has a natural length of 2m and a modulus of elasticity of 90 N. What is the
length of the string when the block hangs in its equilibrium position?

2 A spring is designed so that its length doubles when a weight of SON is attached to it so that it
‘hangs vertically. When in this position, an extra 20N is exerted and the extension increases by
10cm. Find the modulus of elasticity and the natural length of the spring.
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11 A block, A, of mass m rests on a rough plane inclined at an angle 0 to the horizontal. It is on
the point of sliding down the slope, and is prevented from doing so by an elastic string, AB, of
natural length / and modulus of elasticity 4, which is attached to a point B on the plane above

“The coefficient of friction between the block and the plane is 4. The point B is then
gradually moved up the plane. Show that it can be moved a distance d before the block starts
(0 move up the plane, where

. 2/ung)l:osﬂ

Tension, work and energy

tretchis i ires the
force. The point of appli the direction
of 2 ion, and so work is done by the force.

Ths tension or compression i  comseratv e, The work i otsdepends
only on tl itial and final extensions, and is zero if the ial and final
oxtenionsare te e 1t (llows hat  suetched sting o srig, or 3
compressed spring, has stored or potent rgy. This cnergy is ‘recovered” in
e form of Kinti cnergy whe th trng or spin i released.

For example, suppose we attach one end of an elastic string to an object on
smooth table and the other end to a fixed point on the table. We then pull the
string into a stretched position and let go. The object will start to move as the
string returns to its original length. The stored energy in the string s being
converted into the kinetic energy of the moving object.

‘We saw on page 255 that when & variable force F is a function of displacement
x, the work done by Fis given

= JFdx

In the Hooke's law model that we are using, the variable force is the tension
T = kx, which gives

= Jk.rd.

‘When the extension, x, is zcro, no work has been done by the force, so ¢

So, the work done in stretching a string or spring s given by

[ Weotkd or W=
2
Although we have here about

the wark done in compressing a pring by an amount x from it naturallength.
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‘This, of course, assumes that the design of the spring s such as to allow
this degree of compression without the coils meeting. Were they to do so,
there would be an impulse on the block, and the principle of conservation
of energy would cease to apply.

“This situation would have been different had the spring been replaced by
an elastic string of equivalent length and stiffess. The string would go
slack when the block reached L. The block would continue to move
through O at 4ms™

Eventually, the string would become taut. The block would slow and
become stationary when the string was again extended by 1m.

Example 7 A ball of mass 2kg is attached to one end of an ela
whose ther i s 10 (h cling. The s has a natue gt of
2m and a modulus of clasticity of 100 N. The ball is held so that the
string is at ts natural length and is then released from rest. Stating any
assumptions made. find the distance the ball drops before coming
instantaneously to rest.

« The ball is a particle.

o The string is light.

 The string does not deform as it stretches, 5o that we can reasonably
assume Hooke's law is a suitable model throughout the motion.

o There is no air resistance.

o g=10ms™

AUL, we have

KE=0since the ball starts from rest
GPE=0 chosen zcro level 2m|

EPE=0 since the string is unstretched

So, the total energy at L is 0.

AUB, the lowest position of the ball, we have

KE =0 since the ball is again at rest
GPE

So, the total energy at B is 253 ~ 20x.
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Energy is conserved. So, we have
255 =205 =0
= x=0 or x=08m

again at B when it has dropped a distance

Example 8 With the situation as desc

terms of the extension, x, of the string. He

&) the speed when x = 0.2m
b the extension when the speed is 1 ms~
©) the maximum speed of the ball

soumon
As before, the tofal energy at L = 0.

AUP, we have

KE=1m
—mgx = ~20x
A 100
A2 100 _,
A 2x2 5!

Encrgy is conserved, So, we have
2= 20x 42557 =0
= v=xVx-25x
) When x = 0.2, we have
v=ky0x02-25x 02

‘may be travelling either up or down.

1P -20x+252 =0
= 25¢-20x+1=0

Solving this quadratic equation, we get

.054m or x=0.746m

of 0.8m.

nce find:

£1.732ms™!

b) When the speed is 1ms~!, we have from [1]

‘This shows that the ball is at rest at its starting point L (when x = 0) and

ibed in Example 7, find an
expression for v, the speed of the ball when it is at a general point P, in

So, when the extension is 0.2m, the speed is 1.732ms ! and the ball
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So, there are two positions at which the speed is 1 ms~!, and these are
symmetrically placed in the motion of the ball.

a maximum, so is v*. Letting ¥

. we have from [1]
V=200 - 252

= 20 50x=0 fora maximum
ax

= x=04m
= V=20%04-25%0.

= v=d2ms

We can confirm that this is a maxi ing a second
time:

‘The maximum speed of the ball is, therefore, 2ms~!

Example 9 A scale pan of mass 50 grams is hanging in equilibrium
on an ehatic sring of ratuel length 6 and modulus of clasiiy
10N. An object of mass 200 grams is gently placed on the pan. H

far does mc pan drop before coming instantancously to rest? Take
g=10m

soumon

In the diagram, the pan hangs in equilibrium at A, when its extension is e.
Its lowest point after the object is placed on it is B, when it has dropped a
distance h.

Finst we find . Resolvinguetically when the pan s i
equilibrium, we have T = 0.05g =

Using 7= %, we have

Ioe
0.6

0.03m

The object is now placed on the pan, and we us
conservation of enerey to find how far it falls.

‘We take the zero level for GPE at A, as shown. 05N
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AtA, we have

KE=0
GPE=
EPE= 10003 _ 4 60755
AUB, we have
KE=0

GPE = —mgh = —0.25 x 10 x h = ~2.5h

: :
EpE 10X (003 + 4y zs(o,n; +hy
Energy is conserved. So, we have

2.5h = 0.0075

25003+
3

= (0.03+ K~ 0.3h = 0.0009
= P-024h=0
= h=0 or h

‘The solution / = 0 corresponds to the

instantancously to rest. Take g = 10m
soumon
rest at B, when the extension of the string is x.
AUA, we have KE = 0, GPE = 0 and EPE=0.
At B, we have
KE=0
GPE = ~mg(1.2+ ) = ~7.5(12+ )
t 150x%

A 2x12 6258

EPE -

position, A, so the pan falls
by 0.24m before coming msmnuneou:\y torestat B.

Example 10 One end of an elastic string, of natural length 1.2m and
‘modulus of elasticity 150N, is fixed to a point A. A particle of mass
0.75kg is attached to the other end. The particle is held at A and then
eleased from et Find how far the partce fall before coming

‘Take the zero level for GPE to be at A, as shown. The particle comes to

mun.w
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Energy is conserved. S0, we have
6257 - 7.5(124x) =0
S 125 - 1S - 18=0

Solving this quadratic equation, we get

0444m or 0324m

As the required extension is positive, the particle falls a distance of
1240444 = 1.644m.

Note In Example 10, the second solution, x = ~0.324m, does not correspond
to the starting point, A. To interpret it, we need to remember that our model
does not distinguish between a string and a spring. Had we used a spring, the
model predicts that, after coming instantaneously to rest at B, the particle
would then risc above L, compressing the spring and coming to rest once more
when the compression reached 0.324m. It would be difficult to demonstrate
this effect in practice, though if we were to start the motion by pulling the
particle down to B it might be possible to achieve it.

As the problem specified a string, after reaching B the particle would rise
through L and the string would go slack. Thereafter, it would continue to rise,
coming to rest once more at A.

Example 11 Particles of mass 2kg and 3 kg are attached to cither end of a
ight, elastic string of natural length 2m and modulus of elasticity 200 N.
“The particles are placed on a smooth horizontal surface. They are pulled
toa distance of Sm apart and released from rest. Find the speeds of the
particles when the string goes slack and find the point at which the
particles collide.

Let the final speeds of the particles be v, and vz, sm
asshown & )
Initially, we have —_— . =
an
KE=0 3 )
203 0y
2x2

‘When string goes slack, we have

KE=4x2x+lx3xs=

EPE=0
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Energy is conserved. So, we have

27 +3d
2iEM 450
2
= 2+3i=90 m

To solve the problem, we need a second equation in vy and ¥z. To obtain
this, we notice that all the forces involved in the problem are internal to
the system. This means that the total momentum of the system remains
constant. Therefore, we have
Initially: - momentum = 0
When string goes slack: - momentum = 2v, — 3v;
= -3u=0 6]

From [2], we have », = ﬁ Substituting

into [1], we obtain

So, the final speeds are 16.43ms™" for the 2kg particle, and 10.95ms-"
for the 3k particle.

As there are no external forces, the centre of mass of the system
undtrgoes no acceleration. It was initially stationary at a point dividing
the line joining the particles in 1 3:2. Forit to remain stationary,
e pareles must colde o tha point. That i, a the poin 3m from the
initial position of the 2kg particle.

Example 12 A particle of mass 0.5Kg i attached t0 one end of an elastic

particle is projected from O along the plane with initial speed 6ms™
Find

a) the greatest distance from O achieved by the particle
b) the speed of the particle when it returns to O.

soumon

‘The friction force acting on the particle is
F=04x05g=196N
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2) When it leaves O, the energy of the particle is
1x05x6° =91

When the string reaches it greatest extension, x, the EPE is
50x?
2x1
The work done against friction s 1.96(x + 1).

25x2

By the work-energy principle, we have

2557+ 1.96(x + |
= 257+ 1.96x 704 =0

Solving this equation gives x = 0.493 or ~0.571.

Clearly, the negative root is inappropriate, so the greatest distance
from O achieved by the particle is 1.49m.

) When it returns to O, the particle has travelled 2 x 1.493 = 2.986m
against friction. Hence, the total work done against friction is
1.96 x 2.986 = 5.852J.

The KE of the particle when it arrives back at O is, therefore,
9-5852=3.148).
I the speed of the particle is then v, we have
1057 =3148 = v=3548
So, the particle returns to O with a speed of 3.55m ™

Exercise 17C

In this exercise, take g = 9.8m s~ unless a value s given.

1 A ball of mass 500g s fastened to one end of a light, elastic rope, whose unstretched length is
3m and whose modulus of elasticity is 90 N. The other end of the rope is fastened to a bridge.
The ball is held level with the fixed end, and is released from rest.

) What w.n be the speed of the bal when it has falln to the point where the rope i taut but
unstretch
b) How far oo he bridge is the lowest point reached by the ball?

2 A catapult is made by fastening an elastic string of natural length 10¢m to points A and B, a

‘ ‘The stiffness of the string is SONm-'. A stone of mass 10g is placed at
the centre of the string, which is then pulled back until the stone is 25cm from the centre of
AB. Find the greatest speed reached by the stone when it is released.
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8 A ingof masm i hemded ant n oot hacp of s, uichf fxed i et hane,
‘The ring is attached 10 the lowest point of the hoop by means of an elastic string of natural
length a and modulus mg. The ring s inially i es o he hgheat point o th hoop. and is
then slightly displaced. peed of the ring and the reaction between the ring and the
hoop at the point where the ring is level with the centre of the hoop.

9 A particle of mass 2kg is attached 10 one end of an elastic string of natural length 1.2m and
modulus of elasticity 240 N. The other end of the string is fixed (o a point A on a rough,
horizontal plane. The particle is held at rest on the plane with the string stretched and is then
relessd, The paele s reaces A beforecomig 10 rest. Toecosfisen o retion between
the particle and the piane is 0.5. Take g = 10m.

@) Find the initial extension of the string.
) Find the speed of the particie at the moment when the string went slack.

0 A particle of mass 2kg is attached to one end of an elastic string of natural length 2m and
modulus of elasticity 40 N. The other end of the string is attached to a fixed point O on a
rough horizontal plane. The coeflicient of friction between the particle and the plane is 0.5. The
particle is projected from O along the plane with initial velocity vms~". The particle returns
and comes to rest exactly at O. Find
a) its furthest distance from O
b) the value of v

1 A particle of mass  is attached by means of a light elastic string of natural length / and
modulus of elasticity / 1o a fixed point O on a rough plane inclined at an angle o the
horizontal. The coefficient of friction between the plane and the particle s . Initially, the
particle is held at point A directly down the slope from O, such that OA = /, and is then
released from rest. Show that the distance moved by the particle before coming to rest again is

2mgl(sina — ucosa)
7




18 Oscillatory motion

od order'd motion, but ordain'd no rext.
HENRY VAUGHAN

‘When a mass, attached to the free end of a vertical elastic string, is pulled
down and relcased, it performs oscillations. This is one example of oscillatory
motion. In this chapter, we extend the study of clastic srings and springs o
‘model such oscillations, and look at other examples of oscillatory motion. It
turns out that all such examples have the same mathematical solution.

Modelling vertical oscillations

A ball, of mass Mk,

is attached to one end of an elastic string, whose other
‘The string has natural length / and stiffness k. The
bal is pulled down from its equilibrium position and released. Our task is to
describe the subsequent motion of the bl

Assumptions

 There is no air resistance.

© The string is of negligible mass.

» The string stretches without deforming, so that Hooke's law is an
appropriate model throughout the motion

@ The ball is a particle

Setting up the model
AAll variables in this model are measured positive downwards.

First, we consider the equilibrium position. In the diagram, L corresponds to
the unstretched position of the string. E corresponds to the cquilibrium
position, where the extension s .

“The resultant force is zero. So, we have
Mg—Teg=0
> Te=Mg
From Hooke's law, T = ke. Hence, we have

ke =Mg m
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Suppose the ball is now pulled down to B, a distance a below E, and released.  sudiiiiemm.
We need to consider forces acting on the ball in a general pnsman. P.a
distance x below E. In this position, the ball has acceleration !

By Newton's second law, we have
Mg—Tp=M3
From Hooke's law, we have
=k(e+x) ¢

Hence, we have
Mg — k(e +x) = M 6]
Substituting from [1] into [2], we obtain
ke — k(e +x) = M¥
= —kx=MZ

Bl

“This differential equation relates the acceleration of the ball to its position, and
5o provides a model for the motion.

Simple harmonic motion

In the example above, we have arrived at a model in which the acceleration of
the ball s directed towards the equilibrium position and is proportional to the
displacement of the ball from it. An oscillatory motion for which this is true is
called simple harmonic motion (SHM). We have the following definition:

A particle undergoes simple harmonic motion if its acceleration is directed
towards a fixed point and is proportional to the displacement of the particle from
that point.

In general, we express the model for simple harmonic motion as the second-
order differential equation

=

use o of| isah it
the sign of ) of the

Note Not all oscillatory motions are simple harmonic. It does, however,
provide a good model in a wide variety of situations.
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Exercise 18A

1 A particle of mass 5kg is suspended from a fixed point on the end of a light spring of natural
Tength 2m and modulus of elasticity 90 N. Take £ = 10m
) Find the length of the spring when the particle hangs in equilibrium.

The particle ou:.num in a vertical direction. At time 1, it is a distance xm vertically below the

equilibrium pos

b) Drawa dmgmm of the system, incuding al the furws m
relevant lengths. Choose a suitable direction to be

€ Wite down the equation of motion of the particle. Show tha the accleraton of the
particle is given by ¥ = ~9x and hence that the particle moves with SHM. State the value of
* for this motion.

g on the particle, and the

2 An object of mass 0.5 ke i fastened 1o the mid-p a spring of natural length 2m and
modulus of elasticity 8 N. The ends of the spring are fixed to two points, A and B, on a smooth
table, such that ABis 2m, as shown.

2009000000000020209909009099990 (@-0299929999999999990,
P AON00000N000000000000000000 -9 000000000000000000 |

The object is moved away from its equilibrium n and released. Some time later, it is at
the point P, a distance xm 10 the right of the equilibrium point

te, for each

) Draw a diagram of the system, showing the forces acting on the object. Ind:
of the spring, whether it is extended or compressed.

b) Write down the equation of motion of the object and use it to show that the object moves
with SHM. State the value of «? for this motion,

©) The ends of the s d B, are now fixed to points 3m apart, and the experiment is
repeated. By finding the equation of motion of the object in this new situation, show that it
still moves with SHM. What is now the value of &*?

d) Is the equation of motion in part ¢ affected by whether the value of x is such that both
springs are stretched, or one stretched and one compressed? Explain your answer.

3 A ball of mass n is suspended from a fixed point by means of a spring of natural length / and
‘modulus of elasticity /.
a) By how much s the spring extended when the ball is in its equilibrium positi
‘The ball is now pulled down and released. The displacement of the ball below its cquilibrium
position is x.
b) Write down the equation of motion of the ball and from it find its acceleration. Describe the
motion of the bal

n?

4 A ball of mass M is suspended from a fixed point by means of a spring of natural length / and
stiffness k. The displacement of the ball below the fixed end of the spring is x.
a) Write down the equation of motion of the ball.
b) Find an expression for the acceleration of the bl
©) A body is in cquilibrium wh on is zero. Find position of the ball
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Exercise 18B

1 @) By differentiating twice with respect to 1, show that x = acoswr is a solution of the
orx.

) By iflentintin tice with Fspet 10 1. show thtx = asiat s 8 souton f the
differential equat ox.
o By diftrentaing nwu with respect to 1, show that
differential equation % = —a?x.
@) Expand acos (o + ) using a compound-angle formula. Hence find expressions for A and B
which allow x t0 be written in the form

= acos (ot + ) is a solution of the

x= dcosor + Bsinwt

Show that the solutions indicated in parts a and
In each case, find the value of « needed to turn this general formula into the special case.

2 Differentiate each of these formulac once with respect 1o 1:
a) x=acoswr  b) x=asinat ¢ x=acos(wi+a)
By writing & = v, confirm that in each case the velocity and displacement of the body satisfy

the equation

2

wia® - x?)

Interpreting the solutions of the equation

In Exercise 18B, you found three possible solutions of the SHM equation. All
were sinusoidal. (We will establish on pages 435-6 that the general solution to
such equations is sinusoidal )

We now investigate each of these in turn.

x=acoswr

The graph of x = acosat is shown below.

slg
el

The graph describes an oscillation between the values x
value a is called the amplitude of the motion. When 1

aand x = —a. The
)X =a.
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“This solution represents the case where a body is initially at the positive
extreme of its motion. For example,if we pull a mass attached to a spring
down »distan  Fom s squilbrium positon and sart timing s we reese
it x 1 describes the subsequent motion.

=asinwr
‘The graph of x = asin is shown below

‘This graph also describes an oscillation between the values x = a and x = —a.
In this case, however, when £ = 0, x = 0. This solution therefore represents the
case where the body is initially at the origin and travelling in the positive
direction.

x=acos (w1 +a)
The graph of x = acos (w1 +a) is shown below

=12

Again, the graph describes an oscillation between the values x = a and x = ~a.
In this case, however, when 0. x = acos . This solution represents the case
where the body i initially at some intermediate point.

Note The three forms of the solution differ only in the initial conditions. That
in the position and direction of motion of the body at the moment when
timing commences.
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Period of the motion
Oscillations are periodic. That is, a body at any point P wil, after a fixed
period of time, again be at P and travelling in the same direction as before.

Sine and cosine are periodic functions. For example,
coserf = amy 2
cosr = cos(wt +2) = cos w1+
)

“This indicates that, if 1 is increased by an amount 2%, the body will be at the
©
same stage of its motion. This can also be seen from the graph below, where it

is clear that the time between successive maximum displacements is .
)

o

‘This time needed for one complete oscillation is called the period of the
oscillation (also called the periodic time), and is denoted by 7, where

[
:

‘We also refer to the frequency of the oscillation. This is the number of
oscillations, or cyeles, per second. The frequency is given by

1l o
T 2n

Extreme values of speed, velocity and acceleration

The acceleration of a body moving with SHM has its greatest magnitude at the
extreme positions. That is, wh 1, the acceleration is —%a, and wher
x = —a, the acceleration is w'a.

‘The acceleration is zero as the body passes through the centre of the
oscillation.
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The spesd of the body i reest s it puses through the centre of the
oscillation. Using v = wi(a’ sec that when x = 0, the velocity is
ithr o <, depending o the diretion of ravl

“The speed of the body is zero at the extreme positions x = a and x

Summary

For a body moving with SHM, the following equations apply, and can usually
be quoted without proof in the solution of a problem.

Acceleration: ~wix (This defincs SHM)

Displacement: ~ This equation has solutions of the form

or x=dcoswr+ Bsinot

where a is the amplitude of the motion, and the choice of
solution depends on the initial conditions.

Velocity: The velocity at time ¢ is found by differentiating the chosen solution
above.

The velocity at a given posi

x s found from

2 = i@ - x)

Period: T=2%

Frequency: f= =3

Example 1 A block of mass 3kg, is suspended from a fixed point by

‘means of a spring of natural length 2m and stiffness 27 Nm-". Take
s

a) Find the length of the spring when the block rests in equilibrium.
The block is then pulled down so that the spring has length 4m, and is
released. At time t, the block has displacement x below the equilibrium
position.
b) Find an expression for the acceleration of the block, and hence show
that it moves with SHM.

©) What s the period of the oscillations?

) Find an expression for the position of the block at time .
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‘The diagram shows a ball P, of mass M, on a smooth horizontal surface and moving with

SHM attached to two springs, AP and BP, in a straight line. The natural lengths are 4 and

the moduli of elasticity 4, and 7, and the stiffnesses k| and k. The amplitude of the motion is

a. In each of the following cases, find

) the period of the oscillation

) the maximum speed of the ball

a) M=4kg k; =20Nm™' k, =16Nm~',a=0.5m.
2k 20N, 7 = 40N, im.a

o) M =004kg, k; Nm!, ky La m.
@ M06ke iy = 30N, = 2N, = 25m.l = 15,

4 A sphere is suspended from a fixed point by means of a spring. The sphere moves with SHM.
“The period of the motion is 0.5s and the distance between the extremes of the motion is 0.4 m.

a) Find the frequency of the oscillations.

b)
©) Find the maximum acceleration of the sphere.

5 A particle of mass 100 is attached (o the mid-point of a spring of natural length 80cm and
modulus of elasticity 15 N. The ends of the spring are attached to points A and B, a distance of
1m apart, on a smooth horizontal plane. The particle rests in equilibrium.

a) Find the elastic potential energy stored in the spring.

‘The particle is now pulled a distance of 15 cm towards B.

b) Find the elastic potential energy stored in the spring in this position.

‘The particle is now released and performs SHM

©) Use conservation of energy to find the speed at which it is travelling when it passes through
the mid-point of AB.

@) Use your answer (o part ¢ to find the period of the motion

) How far is the particle from the mid-point of AB when it s travelling at half its maximum
speed?

6 Pmms A, H C, D and E lie in a straight line. AB = 15cm, CD = 10cm
m. A particle is moving with SHM so that A and E are the extreme posmans ofits
molmn Tht period of the motion is 0.2s.
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a) Find the maximu speed attained by the particle.
b) Find the speed of the particle as it passes through B and through D,
) Find the time the particle takes to get from B to

o ifitis travelling towards D as it passes through B

) if it s travelling away from D as it passes through B.

7 A coaster needs a 3m depth of water before it can enter or leave a harbour. The deplh of water
in the region of the harbour changes by 8m from high tide to low tide. At low tide,
Harbour bottom is 2m above thesch el S0 no vesel can move. Ther s 4 high ide i 0600
and the next is at 1830, Assuming that the sea level rises and falls with SHM, find

a) the latest time that the coaster can leave the harbour after 0600
b) the earliest time that the coaster can return to harbour after low tide.

8 A mass, Mkg. is attached to the bottom of each spring system shown below. The component
springs are identical and of stiffness k. The mass is set moving vertically with SHM. Find the
period of each system.

9A canoe travelling along a canal forms ripples in the water. A picce of wood is floating on the
ce of the water when the ripples pass. The height of the picce of wood above the bottom
Fihecanals modeld by the equation

'
+0.04sin (5)

where ¢ i the time after the piece of wood first starts to move.

x

a) Sketch the graph of x against 1, showing the important features of the motion.
) Find the vertical speed of the piece of wood as it passes through the original level of the water.

Associated circular motion

Simple harmonic motion and clrcuIAr motion are closely related. Suppose that
a particle, P, moves in a circle constant angular speed , as
shown in the diagram at the Iup afthe next page
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When 1= 0, the particle is at B. At time 1, the angle POB = wr.

“The point Q is the projection of P onto the diameter AB. As P
moves round the circle, Q moves along AB, “keeping pace with P

1f the displacement of Q from O is x, we have

= acoswr

This is a solution of the SHM equation.

As P moves round the circle, Q performs SHM along the diameter.
‘The motion has centre O, amplitude a and period ==,

You may be able to show this in practice. You need an object moving in a
circle with constant angular speed ~ an object placed on a record turntable
would do nicely. Viewed from the level of the turntable, the object appears to
‘be moving from side 0 side with SHM. The effect can be enhanced by using a
lamp at the same level as the turntable to project the shadow of the object
onto a screen. The shadow will move in a straight line with SHM.

The associated circular motion s sometimes used to solve problems in SHM,
although the same results are always obtainable using the standard SHM
equations.

Example 3 A particle is performing SHM along a line from A
where AB = §m. O s the mid poin of AB. Pots Pand n OB
such that OP = 2m an "The period af the motion is 125, How
long does it take the pnnicle 10 travel from P to Q2

soumon
Since we have SHM, the imaginary particle undergoing
the associated circular motion moves with angular spee
@ in a circle with radius 4m, as shown. This gives
=X 5 =X

o 6
In the diagram, we have
=

cosROP =05 = ROP 3 rd

c0sSOQ=025 = SOQ=1318rad

Hence, we have
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The time taken forthe partle moving ith SHM t0 travel from P (0 Qi
me as that taken by the associated particle to travel from R t0'S,

SOR _ 271
o

=0.52s

Simple pendulum

A simple pendulum consists of a mass (called a bob) attached to the end of a
rod or string.

Imagine the bob hanging in equilibrium with the string vertical. It is then
pulled to one side, keeping the string taut, and released. The pendulum swings
from side to side through the equilibrium position.

With a suitable set of modelling assumptions, we can show that the motion of
the pendulum is approximately SHM.

Modelling assumptions

o The string or rod
o The string or rod has zero mass.

« The bob i a particle.

 There s no air resistance acting on the string or rod and the bob.
 There are no frictional forces acting on the fixed end of the string or rod.
 The angle of swing is small.

Setting up the model

Let £ be the length of the string or rod, 1 the mass of the bob and 0
the angle between the string or rod and the vertical at time t, as shown.

We will consider the equation of motion in the tangential direction, as
indicated by the unit vector @ in the diagram.

The tangential acceleration is /{).

The resultant force in the direction of & is —mgsin 0.
By Newton’s second law, we have

—mgsin0 = mii
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Our assumption that 0 is small means that sinf = 0, which gives
i=-%¢
!

This is the equation for SHM with o

1If the maximum angle of swing is ©, and 0 = © when ¢ = 0, the solution of
this equation is

_ ocos(&
e

‘The period of the pendulum’s motion is 7 2—"’: which gives

T=2m/~
2

Note
@ The pendulum’s motion is independent of the mass of the bob, as this does
not appear in the solution of the equation.
@ The assumption that the angle is small is generally taken to mean that @ is
10 more than 0.3 rad (17.2") for two decimal-place accuracy, and
half this for three decimal y. (You can test this
with your caleulator.)

‘You may wish to test the validity of the above model with an experiment. Set
up a simple pendulum using a length of thin cord and a small mass. For ten
different lengths of the pendulum, time how long it takes to do 20 complete
swings. (One twentieth of this wil give a more accurate result for the period
than trying to time one swing.)

From the model, we have the cquation
i,
g
“This suggests that ploting a graph of T* aganst /should result in a straight
fine through the origin with gradient 2. Yon should do this by band or on,a
<
spreadsheet. (The spreadsheet PENDULUM «can be downloaded from the
Oxford University Press website: http://swww.oup.co.uk /mechanics.) From the
gradient of your graph, you can nbuln an cstimate of g.
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Example 4 A pendulum is used to keep time for  group of musi
“They fequire 100 bats per minute. How long shoud he pendulum be?
Take g = 9.8ms~2

soumon
To beat 100 times per minute, the pendulum must make 50 complete
oscillations in | minute.

Using 7'= 22 \/7 we have
¥

60 1
G-t
it
= l4d =4z —
9.8

o =198 o agm (03dp)
ant

So, the length of the pendulum must be 35.7cm.

Example 5 A scconds pendulum is so called because it beats seconds.
“That s, it has a period of 2. If a seconds pendulum is designed to be
accurate in a place where ¢ = 9.8ms %, how much time will it gain in an
hour in a place where g = 9.81 ms~27

sownow

Using 7= Mﬁwm 2and =95, we e

m

@

Dividing [2] by 1], we get

= T=1998980372s

3¢t

37w

Therefore, in 1 hour the pendulum will register

m 1800.918 133 oscillations

This corresponds o 3601.836 2665. The pendulum
365 in 1 hour.

therefore gain
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©) As the particle was at maximum displacement when ¢ = 0, the
appropriate solution to the SHM equation is

acos V301

x

where a is the amplitude of the motion.

In this case,
position, L, when x

= cosV30r=
= Vii=

@) The velocity of the particle is given by v* = &(a® ~ x%).

At the unstretched position, a = 3m and x = —£m. So, we have

) The particle now moves as  projectil. The extra heght, 5 it gainsis
+ 2as, where v = 0 and u = v/10ms~'. So, we have
0=10-2x10xs

1) The time taken to travel from L to the highest point of the motion is

given by
v=utar
= 0=Vi0-10r
= 03165

The total time for one oscillation is, therefore, 2(0.382 +0.316) = 1.40s

In Example 6, notice that the highest point in the motion is 1.5m above the
Towest point, B. Had the particle been moving on the end of an equivalent
spring, so that the motion was simple harmonic throughout, it would only
have risen 0 a height of 2a = 1 4m above B.
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Damped oscillations

‘The most important assumption made in our model of oscillations is that no
energy is lost during the motion. In practice, energy will be lost due to air
resistance and to friction, both internal and external.

z

In some cases, we want the oscilltions to die down, and steps are taken to ensure.

that this bappens qicky: Forcxample, when a car goss ovr s hump, it would

clearly be undesirable for it to continue bouncing up and down for a significant
temina woparts

o For each wheel there is a spring designed to absorb the initial shock of the
‘bump from the road. This will react in exactly the same way as a spring with
a mass on its end.

For each spring there is a shock absorber whose purpose is to prevent the
spring from vibrating for too long. This is called damping, and shock
absorbers are also called suspension dampers

We can represent a spring and a damper system di ically, as shown
on the right.

In order to model damping, the simplest assumption we make is that the
resistive force acting on an oscillating particle is proportional to the velocity
of the particle. This is linear damping. —

It follows that the resistive force, R, is given by
R=-ry

where r is the constant of proportionality ~ the damping constant — and v is the
velocity of the oscillating particle.

Alternatively, we can write the resistive force as

% (for one-dimensional motion)

Let us consider the example of a particle of mass m, suspended from a fixed
point O by a perfect spring of stiffness k and natural length /,. A damper
provides linear damping whose damping constant is r.

‘The forces on the particle are the tension, T in the spring, the resistance, o

R, of the damper and the weight, mg, of the particle.

First consider the mass hanging at rest in the equilibrium position. Taking .

downwards as positive, and using Hooke's law, we have d

ke 5

L

As the particle is stationary, we have R = 0. Therefore, resol .

verticall i
B
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‘The arbitrary constants

‘The values of 4 and B, or R and ¢, depend upon the particular situation we
are dealing with. We need initial conditions to find the particular solution (see
pages 438-9).

Example 7 A particle, P, of mass | kg, rests on a smooth horizontal
surface. It s attached 1o two by two springs
Imand the
stiffnesses are 2Nm~" and 3Nm-" respectively. The particle is subject to
lincar damping with a damping constant r = 4Nm™'s.

a) Find the position of equilibrium of the particle.

The particle is then displaced a distance 0.5m from the equilibrium
position and released.

b) Examine the subsequent motion of the particle.

soumon

) The forces acting on the particle are \I\u tesions, 7'l and T, and the
resistance, D. When the particle is in the equilibrium position, E, we
have

where ¢, and e:

re the extensions of the springs, as shown in the diagram.

Taking positive to the right, when the particle is in equilibrium, the
equation of motion is

Also we have AB = 3m, giving
ate=1

So, the equilibrium position i

Solving [1] and [2], we get ey
AE=1.6m.

5 Suppose he parice s n # ener poion P, xm 0 the right of the
equilibrium position, E, as show,




EXERCISE 180

4 A clock keeps accurate time in a place where g = 9.8 ms~2. It is then moved to a place where
¢ =9.80ms~2. By how much will it be wrong after one day?

5 A pendulum clock, which is accurate on the Earth, is taken to the Moon, where the
aceeleration duc to gravity is one sixth that of the Earth. What time interval will the clock
register during one hour?

& A pendulum s ofength /. The pendulum s haning a e when e bob i gven an
impulse, causing it to start moving with speed um s £
of energy to find the maximum angular displacement achieved by e ‘pendulum in each of the
following cases, and hence decide if the SHM model is appropriate.
Di=2u=5 Wl=6u=2 W)/=05u=05
Ifitis, find
a) the period of the motion
b) the time taken to reach half the maximum angular displacement.

7 Aballofmas2 kgis atiached to one end of a light, elastic rope, whose other end is fixed to the
. The unstretched length of the rope is 2m and its modulus of elasticity is 100N, The ball
h:mgs in equilibrium. It s then pulled down a further 0.6m and released. Take ¢ = 10ms

-y hnd mc equation of motion of the ballin a gmcml position with the rope stretched.

i speed of the ball at the moment when the rope becomes slack.

) Fi d lhc time taken for the ball to reach this point

d) Find the distance travelled by the ball from its lowest point to its highest.
e) Find the time for one complete cycle of the motion.

8 A bungee jumper of mass S0k is attached to a bungee rope whose stiffness is 7SNm-! and
whose unstretched length is 10m. The other end of the rope is attached to the jumping
platform. The jumper leaps from the platform. Take g = 10m s~

a) State the assumptions needed to model the motion.
b) How far does the jumper fall before coming 1o rest?
) How long does it take for the jumper to reach the lowest point?

9 A ball of mass 3kg is attached to one end of an elastic rope whose unstretched length is 2m
and whose modulus of elasticity is 90 N. The other end of the rope is attached to a horizontal
beam. The ball is pulled down to a point 4m below the beam and released. Take g = 10ms-2
a) Show that the ball performs SHM while the rope is taut.

b) What is the position of the ball when it first comes to rest?
<) How long after release does the ball first come 10 rest?
d) How far below the beam should the ball be pulled initially if it is 10 just reach the beam?

10 A scale pan of mass m is suspended from a fixed point on the end of a spring of natural length
Iand modulus of elasticity 6mg. A particle of mass 3 is placed on the pan and the system
hangs in cquilibrium. The pan is then pulled down a further distance / and relcased.




19 Differential equations

Wander in my words and dream about the pictures that 1 play of changes.
P ocns

Definitions and classification

A differential equ
examples:

) :

i) :—’+2y sinx i) —+6A 4cos 3t
WYy _dy -

iii) (d:) W a x-3x+4

When we speak of diffe uation, we mean obtaining a

relationshi connceting the two varibles which does not il &
derivative.

A derivative corresponds to a rate of change. Many real-life problems involve
quantities which are changing continuously, and the associated mathematical
‘models will be expressed in the form of differential equations. The solution of
such equations is therefore an important branch of mathematics. In this
chapter, we will encounter applications not only in mechanics but in a range of
other fields.

You have already met simple differential equations such as % = 2vand can
solive these by integration. Some other types of differential equation can be
solied using analytical techniques, but many differential equations can only be
solved by numerical methods.

Differential equations are categorised by their style and complexity.

» The order of a differential equation is the order of the highest derivative
appearing in the equation. OF the examples above, i and Iv are first-order
equations, while i and iii are second-order equations.

 The degree of a differential equation in i the highest poverof yoris
derivatives appearing in the equation. OF the examples above, i, if and iy are
fist-degree equations, while i s 4 second-degrec equation eciuse it

d

contains ( An equation of the first degree is called linear.

dr

In this chapter, we will concentrate on lincar equations.
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Example 2 A spherical air freshener is evaporating at a rate proportional
10 its surface area. Find an expression for the rate of change of ts rad

Let the volume be ¥ the surface arca be A and the rddms be at e
“The information given corresponds to the differe

where k is a positive constant. (The negative sign indicates that the
volume is decreasing.)

We know that A = dzr?, giving
av

= = —4nkr?
ar
We also know that ¥ = 47r’, giving
v,
oy
a

We require an expression for % These three rates of change are related
by the chain rule
ar_av o

a A

= —dnkr? 4xr=x%

which gives

The radius is thercfore decreasing at a constant rate.

Exercise 19A

1 An object of mass 5 kg is dropped from a hot air balloon. As it falls, it is subjected to air
resistance RN proportional to its speed vms . By mnmienng Newton’s second law, express

this as a differential equation connecting v, the and a constant . As it falls, the nb]bc! s

acceleration decrcass and it approaches terminal v:hmly If the terminal velocity of the object
is 60ms~!, find the value of k.

2 If a capacitor is subjected to a potential difference it gains charge up to a maximum, Qyxx
“The rate at which it gains charge is proportional 10 the difference between its charge and the
ma charge. Express this as a differential equation connecting the time. 1. the charge. Q.
on the capacitor at that time, and a constant k.
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5 Use the substitution z = y — x 1o rewrite ‘fz’

(¥~ x)* as a differential equation in =

Hence
= 0(x)

a) find the general solution of the original causton in the (orln
b) find the particular solution, given that y = 0 whe

©) show that, in this case, y = when x
T+¢
6 An object of mass | kg falls from rest. Air resistance is of magnitude 0.1vN, where v s the
speed of the object. Writ a diffrentil equation connesing v and ,and solve i 1o find v in
terms of 1. Hence show that » cannot exceed 98 m

7 The motion of a go-cart with a laden weight of 300kg is modelled by assuming that its engine
exerts a constant power of 4kW, and that when travelling at a speed of vms " it is subject to a
resistance force of 10vN.

#) Use this model to write a differential equation connecting v and
b) Find the particular solution if the go~cart starts from rest.
) How long does the go-cart take to reach half its maximum speed?

First-order linear equations
A first-order linear equation can be written in the form
a

+P()y=Q(x) U}

dx
Such cquations can be solved by using an integrating factor.

Consider the expression eJ "4y, Differentiating this with respect to x, we have
4 (ofreienyy J'r'r(mxﬂl‘fp“)cjrrm-) 2
Multiplying through equation [1] by e/ "9, we get
mem Bl =oM% g

which from [2] gives
PN CETERN oY
el =el"ow
Integrating, we have

WL

y=[elmquas

and, provided we can integrate the right-hand side, the equation is solved.

The expression ¢/ "9 is called the integrating factor.
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Example 5 Find the general solution of the differential equation

‘Comparing this with equation (1], we have P(x) = 2x, which gives

qu) dx= Jz\ dx

The integrating factor is, therefore, e/ " = ¢¥ Multiplying through by
this, we get

which gives the general solution as
b+ e

Example 6 Find the general solution of the differential equation

and hence find the particular solution for which y = 2 when x = 0.

sowumon
‘The equation is not yet in the correct format. To correct this, we divide by
2+ 1) 1o ge

gy

da x4l
Comparing this with equation (1], we have P(x) = )i » which gives
5
IPLr)dv = j e dr =L 4 ) = VE T
xtal

“The integrating factor is, therefore,

e 2 g o TET
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ing through by this, we get

. 3x

VATHET VATET

= ﬁ(ym):ﬁ},%
= ,‘/W,J'—”W—l =3xri4C

> y=3+S

which is the general solution.

To find the particular solution, we substitute x = 0 and y = 2, giving

2=34+C = C

So, the particular solution is
1

Exercise 19C

1 Find the general solution of the following first-order linar differential equations by using an
integrating factor.

" \'ld—"—l\j':x’ln.\ n:ou"—’ws

2 A particle has a mass of | kg and starts moving from rest. For the first 105 o
subject at time 15 to a force of magnitude (10 — )N in a constant direction, and to a
force of magnitude 0.2¢N, where » s the eloety of he parice. Express his iformation a5 &
differential equation connecting v and 7, and, by solving it, find the speed at which the particle
is moving at the end of the 105 period.
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Linear differential equations with constant coefficients

‘The integrating factor technique is applicable 10 any first-order lincar
differential equation, but i the equation has constant coeflicients there is an
alternative technique.

A constant-coeflicient linear differential equation has the form

dr &y adly
PR
P T T e
where dy, ay, a3, a, .. are constanis.
1 the function f(x) = 0, the cquation is called a homogeneous linear equation.

Initially, we will consider a homogencous first-order linear equation with
constant coefficients, such as

0

dy
Eos,
dy 7
We already know how (o solve this using the integrating factor technique.
‘The integrating factor s e**. Multiplying through by this, we get
sody s
P Lpsety =0
¢ ) ey
5
= Letn=o
e

= ey=cC
= y=Ce®

However, it is casy to sce that all such equations will yield an cxponential
ion. and knowing this, we can solve such equations as follows.

Consider again the equation
.
dx

‘We assume that the solution to this equation is of the form y = A¢™

0

Differentiating this, we get

Substituting in the differential equation, we have

my+5y=0
Now, y cannot be zero (or we have the trivial particular solution y = 0) and s0
m+5=0 6]

= m
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Ae,

“The general solution s, therefore,

Equation [3] s called the auxiliary equation.

T general,for the equation $- 4y Lk

0, the auxiliary equation is 1 + k

Example 7 Find the general solution of the homogencous differenti

v
uation < 4 4y
eqy oty

‘The auxiliary equation is m + 4 = 0, from which m

Thus the general solution is y = Ae

Exercise 19D

1 Find the general solution of the differential equation :4
ix

#) by separating the variables
b) by using an integrating factor
©) by using the ausiliary equation.

2 F d the general solution of the following first-order homogeneous linear differential equations
he ausiliary cquation.

Liy=0
ndrw

dr
& gse=o
LT

‘The complementary function and the particular integral

We now have to find the solution to the non-homogencous linear equation

To see what form our solution should take, let us use the integrating factor
method 1o solve a simple example in which f(x) is a constant:

dy
Lisy=
ar=3



FIRST-ORDER EQUATIONS

The integrating factor is ¢, Multiplying through by this, we get

A g
5L 5
sy

365

%(c“.-

which is the general solution,
The solution we have found consists of two parts:

o y= Ce™* i the solution to the associated homogeneous equation
4

Yoo
ax Y

Ce* s called the complementary function.

o y=1}is one possible solution to the original equation % +5y

(This can be checked by differentiating it.)
is called a particular integral.

If we can find these two parts for a given equation, our task is complete. Our
approach is, therefore, as follows.

o First, solve the associated ation to find the
function (CF).
« Then find a particular integral (P1) which satisfies the original cquation. The
‘general solution is then
y=CF+PI
Note You need to be clear as to the difference between the terms particular
integral, as used above, and particular solution, used to indicate the solution
consistent with a given set of boundary conditions.

‘We find the particular integral by deciding on its likely form and substituting

our trial solution into the equation.
S Example 8 Find the general solution to the homogeneous differential
equation

dy
—ay=2x-8
ax Y
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souumon
The commicentary function is found from the asso
equat

ted homogenous

—4y=0
‘The auxiliary cquation m — 4 = 0 gives m = 4, and so the CF is y = Ae*.

‘We now need a particular integral which will generate the (2x — 8) term.
Because this is a linear expression, we try the general linear expression

y=rPx+Q

Differentiating this, we get
ey

Substituting in the differential tq\ml\on. we have
Pod(px+Q)=2v~

“This is an identity and so we ean compare coeflicients:
X' -4P=2 giving P=

R AQ -8 giving Q
L

Hence, the Pl is

We find the general solution by combining the CF and the PI to give
Ac 17 ~dx

Finding a particular integral

‘When using the above technique, our trial solution should be the most general
form of the right-hand side of the original equation. In this book, we only
consider equations in which the right-hand side is either a constant or a linear
expression. (Other situations are dealt with in Further Mechanics.) Hence, we have

Right-hand
Right-hand side is a linear expression  Trial solution y = Px+Q

is a constant Trial solution y =

Exercise 19E

1 In cach of the following, use the auxiliary equation method 1o find the general solution.

dv dx d[v
LA T L I Y =, b= 1-x b=
@ =2 ) G2 ) Lty E) Sp=1+5

dx
"




SECOND.ORDER LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

ion of each of the following differential equations by finding the
each ease the particular

2 Obtain the general sol
complementary function and the particular integral. Hence fin
solution consistent with the given initial conditions.

when x =

iy = 8. given that y =

Sx =10+ 21, given that x =2 when 1 =0

3¢ 3x++2, with initial condition x(0) = 6

4~ 8, with initial condition y(0) = §

n % +3x = 61, with initial condition x(0) = 9

Second-order linear ions with coefficients

With first-order linear differential equations with constant coefficients, it is a

‘matter of individual choice whether to use the auxiliary equation technique or
the integrating factor technique. However, when we progress to second-order

cquations, we cannol use the integrating factor technique but the aus

quation technique sill holds good.

‘The complementary function

Consider the non-homogeneous second-order differential equation with
constant coefficients.

dy
s
ax e

‘The associated homogeneous equation is

()

P

“

Let us assume that this has a solution of the form y = A e™.
this, we have

Ll
v

= Ame™ =my and
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Substituting into equation (4], we obtain

amty+bmy + ¢y
Since y # 0 (this would be a trivial particular solution), we have
0

ani® +bm + ¢

This is the quadratic auxiliary equation derived from the second-order
homogencous Girential equation.

I we assume that its solutions are m, and mry, then we have two solutions to
the differential equation:

n=dem and gy = Bemt
1f y, and y, are two solutions to a differential equation, then y; + 37 is also a
solution.
Hence, the most general form of the complementary function is

R p—
Note that this equ: s two arbitrary constants. Solving a second-
order differential equation is equivalent to integrating twice, generating as

arbitrary constant each time we integrate. (In general, the solution to an nth
order differential equation has n arbitrary constants.)

However, the quadratic auxiliary equation am® + bm + ¢ =0 has three types of
solution:
* Two real, dmmc( roots.

* A real, rep

. Two mmpl:x roots.

We will deal with each case separately.

Two real, distinct roots

Essentially, this is the case dealt with above. If the two roots are i and ms
then the complementary function takes the form

PR

A real, repeated root
The problem here is that if the repeated root is 1, say, then the complementary
function would be
= Ac™ + Ben

= y=(d+Bem

= y=Ce™
‘This cannot be the complete complementary function, since it has only one
arbitrary constant.




SECOND-ORDER LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

If the auxiliary equation has a repeated root m, the associated equation is

dy
—2m 9 my =
o e
Consider y = Bre™. Differentiating this, we obtain
4

rve™ + &™) and %
v ) o
We can establish by substitution that these satisfy the equation. (You should
check that this is s0.) Hence, the most general form of solution is

y=dAe™ 4 Brem™ or y=(d-+ By

BOnxe™ + 2me™)

Two complex roots

Suppose the roots of the auxiliary equatios
hpi and my =i
where i represents v~ 1. (Some examination boards use j to represent v=1.)

m

‘These correspond to an auxiliary equation
[ = G+ i) — (i~ i) = O
which expands to give

mR = 2im + (7 +

‘This would arise from the differential equation

&y, i

5
dx? o
Now consider the function

¥ = & (Acos px + Bsinjux)
Differentiating, we obtain

L3 iy + pe*(Beos jux — Asin ux) 16)

dx
Differentiating again, we obtain

— iy + Apet(Beos px — Asin i) m

From equation [s]. we have
e (Beos px — Asinp) = ﬂ _iy

Substituting into rquallun [7), we obtain

zAﬂuAuu‘)\J

which corresponds to equation [5
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Hence, the complete complementary function is given by
+ Bsinjux)

y=et(deos

where /. and j are the real and imaginary parts of the roots of the auxiliary
quation. This is sometimes written in the alternative form

R cos (ux + )
where the arbitrary constants are now R and .

Example 9 Find the general solution to the homogeneous equation

&y sdy
dy 5O,
e Cat®
soumon
“The auxiary equation is
= Sm 4620

= - Hm-2)=0

= m=3 or m=2
A4 B,

Thus the general solution is y =

Example 10 Find the general solution to the homogeneous equation

&by
L2 6L igy=0
e
umon
The auiliary equation is
m*— bm+9=0
= (m-3=0
m=3 (repeated root)

‘Thus, the general solution is y = *(dx + B).

Example 11 Find the general solution 10 the homogencous equation
&y _cdy
LY 6% 13y=0
@ e

‘The auxiliary equation is
m—Gm+13=0

= m:LV;"‘“ 342

(A cos2x + Bsin 2).

s

‘Thus, the general sol



CHAPTER 15 DIFFERENTIAL EQUATIONS

= m=0 or m=-4
“Thus, the complementary function is y = A + Be .

Note that this contains a constant term, which conflicts with our
first-choice trial solution ol

Px+Q
We overcome this by using the trial solution
Px?4Qx
dJ‘
= Lo2priQ and

Substituting into the differential equation, we obtain
2P+ACPY+ Q) =4y -7
Comparing coeflicients, we have
X 8= ving P
Wi 2440 =T giving Q
Hence, the particular integral is y v
“The general solution is CF + PL, which gives
+Be - 20

The particular solution

“The general solution of a second-order differential equation contains two
arbitrary constants, and so we need two sets of conditions to find their valus.
We can do this in two ways:

dy

o Give the values of y and 9 when x takes a particular value (usually x

These are called il condions. This s the most common situation.
® Give the value of y for cach of two different values of x (usually the end
points of the interval being used). These are called boundary conditions.
te For a given set of conditions, there will usually be a unique solution, but
the simultancous equations to find the constants may be inconsistent (no
solution) or not independent (an infinite number of solutions).

I Example 14 Find the particular solution of the differential equation
dy
[TERT

given that y
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soumon
From Example 13, the general solution is

= A+ Bet ot fat -2y

4Bt 4 x-2

When x =0, y = 0, 50 we have

A48 m
. dr
When x =0, 6,50 we have
dx
6=-48-2 @

Solving [1] and [2], we obtain 4 =2, B = -

So, the particular solutio

2-2et g dy? 20

Example 15 Find the particular solution of the differential equs

v, odr
=5+ 6-—+13x=13r+32
g PO e e

given that x

1 when 1

0, and x

x

2when ¢ =%,
[

soumon

From Example 12, the general solution is

(A cos 2 + Bsin2e) +1+42

When 1 = 1. 50 we have

=442 = A=-1

so we have

Be¥ife2 = B

So, the particular solution is




Examination questions

Chapters 15 to 19
Chapter 15

1 Show that the constant acceleration equation v* = u* is dimensionally correct.

(NICCEA)

2 The formula st = “— s used to calculate the coeflicient of friction for a uniform chain of

length /metres about to slip over the edge of a rough, horizontal table. A length xmetres rests
on the table while the remainder hangs vertically over the edge. Show that the formula is
dimensionally correct.  (NICCEA)

3 When a pendulum is suspended and allowed to swing, its motion can be described by the equation
$10? — mghcos b = constant

where p i its mass, & is the distance from its centre of mass to the point from which it i
suspended, e is the angular velocity, # is the angle the axis of symmetry of the pendulum
‘makes with the vertical and / is a quantity called the ‘moment of inertia’ of the pendulum.

i) Write down the dimensions of e. Show that cos is dimensionless.

1i) Hence show that, for the equation of motion to be dimensionally consistent, 7 must have
dimensions ML2.

For small oscillations. the period, T, of the pendulum is believed to depend on its moment of

inertia, its weight and the distance of its centre of mass from the point of suspension. The

formula 7 = kI*(mg)"h is proposed, where k is a dimensionless constant.

i) Use dimensional analysis to determine x, fand 3. (MEI)

Chapter 16

4 A roundabout in a playground moves in a horizontal circle with centre O. The roundabout
completes one revolution every S seconds. A child sits on the roundabout at a horizontal
distance of 2 metres from O. Caleulate, giving your answers in terms of 7
a) the speed of the child
b) the magnitude of the acceleration of the child.  (NEAB)

5 A railway engine travels at a constant speed of vm ' on a curved track. The curve is an arc of
a honmnlul circle of radius 550m. The magnitude of the acceleration of the engine is

Making a suitable modelling assumption, which should be stated, calculate v.

Tl\c mass of the engine is 45000 kg. Calculate the magnitude of the resultant horizontal force

on the engine.  (OCR)
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6 In some amusement parks there is s effectively a hollow cylinder which can rotate
about its vertical axis. The riders stand on the horizontal basc of the cylinder and in contact
with the curved surface of the cylinder. When the angular speed reaches a certain value the
floor is dropped but the riders remain in contact with the curved surface of the cylinder. The
radius of the cylinder is 2.5m and the speed of rotation is 30 revolutions per minute. Find the
smallest possible coefficient of friction between the rider and the cylinder surface so that the
ride works effectively.  (WIEC)

7 A conical pendulum consists of a particle attached to the
end of a light inextensible string of length 0.8 m. The
particle moves in a horizontal circle, and the system
rotates at a constant angular speed of 4rads™" (see
diagram on the right). Find the angle that the string
makes with the vertical.  (OCR)

8 OP s a light, inelastic string of length 0.5 m. A particle of mass 5 kg is fastened at the end P
and the end O is held at a fixed point A on a smooth, horizontal surface. The particle is made

to rotate in horizontal circles on the surface with angular speed 2rad s~ about A.

1) Find the tension in the string.
‘The end O of the string is now raised until it is 0.3 m vertically above A. The particle continues
to rotate on this surface in horizontal circles about A. The figure below shows all the forces
acting on P while it is in motion.
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Bt

et

ig. 1 shows the cross-section of a hollow
container. The base of the container is circular,
and is horizontal. The sloping part of the side
‘makes an angle of 15° with the horizontal, and
the vertical part of the side forms a circular
cylinder of radius 0.4m. A small steel ball of
mass 0.1 kg moves in a horizontal circle inside the
container, in contact with the vertical and sloping
parts of the side at A and B respectively, as
shown in Fig. 2.

=

Itis assumed that all contacts are smooth and Fig2

that the radius of the ball is negligible compared

100.4m.

1) Given that the ball is moving with constant speed 3ms", find the magnitudes of the
contact forces acting on the ball at A and at B.

) Caleulate the least speed that the ball can have wi
part of the side of the container.  (OCR)

remaining in contact with the vertical

12 A bend in a road is in the shape of a circular are of radius r and is banked a1 20° o the
horizontal. A lorry, travelling around the bend at 20m s, is on the verge of slipping down
this slope. The coefficient of friction between the lorry's tyres and the road s 0.2.

i) Model the lorry as a particle :\nd dmw a diagram to show all the forces acting on it
i) Find the value'of . (NICG

13 A car is travelling round a circular bend on
a road which is banked at an angle of 107 to
the horizontal, as shown in the figure on the
right. The car is modelled as a particle
moving in a horizontal circle of radius 80m.
When the car is moving at a constant speed
of vms~" there is no sideways frictional
force acting on the car. Twr

Find, to three significant figures, the value
of v.  (EDEXCEL)
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16 In this question assume g = 10m s

At an adventure park a child, of mass 46 kg, swings
on the end of a rope of length 6m. Al the motion
takes place in a vertical plane. Initially the rope is at
an angle of 40° to the vertical and the child has a
velocity of 2ms ! at right angles to the rope. Ignore
the eflects of air resistance on the child.

2 State twoassumpions that it would be spproprine
to make about the rope in thi

5 Show that the mavimam speed of the hid s
approximatcly 5.7ms"!

¢) Find the maximum tension in the rope.  (AEB 96)

B

The pilot of a stunt aircraft flies it in a vertical circle of radius 200m. Near the top of the
circle, the aircraft is flying upside down at a constant speed of 40m s~!. The mass of the pilot is
61 kg Show that, at the top of the circle, the magnitude of the reaction between the pilot,
modelled as a particle, and her aircraft is approximately 110N,

State whether, at the top of the circle, the p|l°l fcck that she is being pressed into her seat, or is
hanging suspended in the safety harness.

18 In this question take the value of g, the acceleration duc to gravity, as 10ms

A wall at the end of a horizontal track can be modelled as half of a smooth cylindrical shell,
centre O and radius 5v2m, as shown in Fig. 1 below.

Fig.1

A stuntman on a skateboard skates along the track and skates up the wall. A is a point on the
wall such that OA makes an angle of 45° with the downward vertical. The stuntman has a
of 5T0ms" at A.
#) Find the speed of the stuntman when he is at point B on the wall where OB makes an angle
of 45° with the upward vertical.
i) Prove that he is just about to lose contact with the wall when he reaches B.
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A horizontal platform is mounted at the same level as A and ends at a point vertically below
0, as shown in Fig. 2 below.

Teuck

b2
) How far from the end of the platform does the stuntman land?  (NICCEA)

Chapter 17

19 A student hangs a 0.2 kg mass on a spring and notes that the length of the spring increases by
4cm from its natural length,
a) Use this information to write down a possible relationship between the tension in the spring
and its extension.
‘The 0.2 kg mass is removed from the spring and a 0.5 kg mass is hung on the spring. Its length
increases by 12cm from its natural length.
b) Show that this does not agree with the previous model. Sketch a graph to show how tension
varies with extension and suggest an alternative linear model that both observations satisfy.
(AEB9)

The ends of a light clastic string, of natural length 2/ and modulus of elasticity 7, are attached
to fixed points A and B, where AB is horizontal and AB = 3/. A particle P of mass m, is
attached to the mid-point of the string, as shown in the figure above. The particle is held at rest
with the string horizontal and is then released. In the subscquent motion air resistance may be
neglected,

“The partice falls a distance 2/ before frst coming instantaneously to rest.

) Show that
b) Find the mugnuud: of the acceleration of P when

first comes 10 instantaneous rest.
(EDEXCEL)
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21 A M toem P B

e

A particle P, of mass 1.2k, s attached (o fixed points A and B by two light elastic strings,
each of natural length 10cm and modulus of elasticity 1.5N. The points A and B are 60cm
apart on a smooth horizontal table, and the mid-point of AB is M. The particle P is released
from rest at a point on the line AB which is 10cm from M (see diagram above). Neglecting air
resistance, calculate

1) the initial acceleration of P
i) the speed with which P passes through M. (OCR)

ight elastic spring of modulus of elasticity 80N and natural
0cm is held horizontally in the jaws of a vice, as shows M
the diagram. Given that the distance between the jaws is 16¢m,
calculate the magnitude of the force exerted by each of the jaws on
the spring.  (OCR)

2 A 5

a) Assuming Hooke's law show, by integration, that the work in extending a spring of

b) The diagram above shows a spring of natural length 0.15m in a smooth horizontal tube
w.m its end A fixed and a small bead B of mass 0.2 kg held in cquilibrium by a force of
tude 60N pressing it against the frec end of the spring. The compression of the spring
i s position is 0.03m.

1) Find the modulus of elasticity of the spring.
1) The bead is released. Find, using the conservation of energy, the speed of the bead just
as the spring attains its natural length.  (WJEC)

24 A particle P, of mass 0.2 kg, hangs in equilibrium
suspended by two light strings attached to fixed
points A and B at lh= same | honmnlll level and
0.5m apart. The s nsible and has
length 0.5m. The string BP is elnsuc. with
unstretched fength 0.5 m and modulus of elasticity
Znewtons. In the equilibrium position, angle PAB is
80 and angle APB = angle ABP = 50° (sce diagram
on the right),

#) By considering the equilibrium of P, find the
tension in BP
i) Hence find the value of 4. (OCR)

é‘
&
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25 A sping of maural length 0.6 and modulus of sty 60N obeys Hooke's Law in
extension and compression. It hangs vertically with one end attached to a fixed poin
X artice of mas 0.5 Ke 1 ttached 10 he other . The parici s puled verteall Sown and
released from rest.

Take the gravitational potential energy of the particle to be zero at the horizontal through O.

Whenthe sprig s steiched  meres verialy downwards beyond s natural logth the

particle has speed v

#) Show that the energy stored in the spring is S0,

i) Find, in terms of x and v, an expression for the total mechanical energy, i joules, of the system.

1) If the particle i released from rest when the total length of the spring is 0.7m, use the
principle of conservation of mechanical energy to show u..u the length of the spring is
0.598m when the particle next comes 10 rest.  (NICCEA

A manufacturer of nursery equipment is using a large doll to test the safety of a ‘baby

bouncer’. The “baby bouncer consists of a light harness, which is attached t0 one end of each

of two identical elastic cords. The other end of cach cord is fastened 1o a fixed horizontal rail,

as shown in the diagram. Each cord may be modelled by a llghl elastic string of natural length

1.2 metres and modulus 2 newtons. The mass of the dollis §

) When the dollis sospende i cquiliom, e creasion ar each of the cords is 20cm.
Taking ¢ = 10ms~, show tha

b) The dollis now held at a distance of |

al and unstretched, and released from rest
which the doll falls before coming momentarily to .

©) The doll is pulled vertically downwards, so that the extension of each of the cords is 60cm,
and released from rest.

> metres vmmuy below the rai, so that both cords
(he vertical distance through

1) Show that, when the extension of the cords is xmetres, where x > 0, the kinetic energy
of the doll is

(24 +80x - 200x2) J

) Find, in terms of x, the acceleration of the doll,
) Calculate the greatest speed of the doll during its upward motion.  (NEAB)
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2

Carol plays a bat and ball game in her garden, as shown in Fig. 1.

The ball of mass 0.05 kg is attached to one end of an elastic string of natural length | m and
‘modulus of clasticity 4.9 N and hangs vertically in equilibrium. The other end of the string is
attached to a fixed point A. Carol strikes the ball and gives it a speed of 1Sms".

1) Taking the gravitational potential energy of the ball to be zero at the equilibrium position,
show that the total energy of the ball and string s 5.6495 1.

At the greatest extension of the string, the ballis stationary and at a vertical height of 0.1 m
above the equilibrium position, as shown in Fig. 2.

A

 osizonsl

W) Using the principle of conservation of mechanical energy, find the horizontal distance, BC,
metres, correct to two decimal places, of the ball from the equilibrium position.
(NICCEA)
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Chapter 18

28 A body moves with simple harmonic moliun in a straight line. The amplitude of the motion is

3.4m, and the equation of motion is =X = ~9.9x, where xmetres is the displacement of the

ar
body from the centre of motion at time ¢seconds.

1) Find the period of the motion of the body.

i) Find the maximum speed of the body.  (OCR)

29 The diagram on the right shows a particle P of mass 0.2kg on
a horizontal platform. The platform oscillates vertically in
such a manner that the motion of P s simple harmonic with “

2
centre A and period '7"‘ The amplitude of the oscillations is

denoted by am.

8) Find, in terms of a, the speed of the platform when at a height of 32 m above the level of A.
b) Find the greatest value of a such that the particle does not leave the platform.  (WJEC)

H

A sailing ship i rolling in heavy seas. A sailor s at the top of a tall mast which swings from

side to side. While the sailor is in contact with the mast, his motion is modelled as that of a

particle moving horizontally with simple harmonic motion of period 10 and amplitude 7m.

The mass of the sailor is 100 kg and he loses his grip when the horizontal force acting on him is

25N,

a) Find, to two si
when he loses his

b) Find. to two s|gmrcmu figures, his speed when he loses his grip.  (EDEXCEL)

ﬁcum figures, his distance from the centre of oscillation at the moment

31 The blade of an clectric saw moves up and down describing simple harmonic motion. The tip
of the blade moves between two points a distance d apart. The amplitude, speed and period of
the motion can all be varied.

a) For one particular job the maximum speed of the blade s set to Sms ™! and dis st to Sem.
Find the period of the motion.

b) The maximum speed of the blade can be set to any value. Show that the speed of the blade
always drops to half of its maximun value when it is at a distance of# from the
‘mid-point of its motion. (AEB 98)

32 In this question you may quote, without proof, any SHM
i I

‘The diagram on the right shows a cylindrical buoy of height
2m and mass 440 kg floating vertically in equi
calm sea, the point marked A on the cylinder being at sea
level. The upward buoyancy force duc to the sea, when the
length of the buoy beneath sea level is dm, is 2750¢N. Find
the height of A above the base of the buoy.
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) The topofthe oy i then mavee dowads  lstanes f 0.2 an ks Irom st at
0s. During the subsequent motion the downward displacement of A from sca level
atime 13 7 donated by x1n Assuming that
o the motion of the buoy an be modelled by the motion of a particle of mass 440 kg at the
centre of gravity under the action of gravity and the buoyancy force
o the motion of the buoy does not affect the sea level

show that

=-6.25v

ar?

1) Write down an expression for x in terms of 1.

) Find the time taken before A first returns to sea level and the maximun speed of the buoy.
iil) Find the time taken until A is at a depth of 0.1 m below sea level.

b) A passing ship disturbs the sea level so that at time rs the displacement of the sea level
below the original level of the calm sea is 0.4sin 21. The downward displacement of A below
the original level of the calm sea is again denoted by xm. Obtain, but do not atiempt to
solve, the differential equation satisfied by x.  (WJEC)

33 An engineer s observing a machine component performing simple harmonic motion about a
fixed point O. She uses x to denote the displacement (in cm) of the component from O, and ¢
10 denote the time (in seconds) from the first observation.
She first observes the component when x = 3 and it is moving away from O. Two seconds later
she observes it pass through O for the first time. She observes that the period of the motion is
6 seconds.

1) Sketch a graph of x against £ for 0 < 1 < 6, showing the values of x and ¢ where the graph
crosses the axes.

An expression for x in terms of 7 of the form A cosr + Bsina is to be found.

i) Calculate  and A and show that B = V3.

1) Calculate the amplitude of the motion and hence, or otherwise, calculate the speed of the
component when it was first observed.

iv) Find the greatest acccleration of the component.  (MED)

34 A plumber, working on a plumbing system, causes the water in a U-bend to oscillate to and fro
in simple harmonic motion between the two positions shown in the figure below.
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At a particular instant the water level in the left hand side of the U-bend is 0.5 cm above the

equilibrium position and rising at % cms~". A short time later it is 1 cm above the

equilibrium position and rising at

1) Find the amplitude, a centimetres, of the motion.
i) Find the time which elapses from the instant the water level i rising through the point 1 cm
above the equilibrium position until it next reaches the highest point.  (NICCEA)

‘The graph shows how the displacement, s, of the tip of a needle in a sewing machine varics
with time, «. The displacement, s, is measured from the level of the cloth in the machine.

s

o]

Displcement ()

Assume that the motion of the tip of the needle is simple harmonic and that its displacement
can be modelled by s = A cos(ar) + d.

a) Find the values of A, w and d.

b) Find the time when the needle first pierces the cloth.

) Find the maximum speed of the needle and the speed when it pierces the cloth.  (AEB 98)

A simple pendulum consists of a mass on the end of a string of length 2a.

a) Draw a diagram to show the forces acting on the mass when the string is inclined at an
angle 010 the vertical.

b) By considering the component of the resultant force perpendicular to the string, show that
attime 1

"
stating clearly any assumptions you have made.
) Find the period of the simple pendulum in terms of a, g, and .
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@) The pendulum swings through a small angle from A, where
it was at rest, to C where it comes to rest again. It describes
an arc of radius 2a between A and B and an arc of radius
abetween B and C.

Find the time that it takes for the pendulum to get from
AC.  (AEB9T)

Chapter 19
37 Show that the differential equation
dy @
o e
& /(1 4 x)’

b inegrtiog factor (1 7, where i n nege whose v valuev 10 be found. Given that
hen x = 0, find the solution of the equation.

38 Find an integrating factor for the equation

and hence obtain the general solution of the equation.  (WSEC)

39 Show that an appropriate integrating factor for the differential equation

is x*. Hence, or otherwise, find the solution of the differential equation for which y = | when
(WIEC)

40 ) Find the gmenl solution of the differential equation

7+47+ﬂx 0

dr?
b) In cconomic modelling of investment it is assumed, with a particular choice of units, that
) the rate of increase of excess capital k is equal to the investment /
1) the rate of decrease of the investment / is equal to the sum of 8k and 41.

n terms of /, and ﬂ in terms of k and /. Hence show that k satisfics the

Express §

aierencl equation in part a. Gomment on the behaviour o k for large values of . (WIEC)
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a1 am xm

x ) v B

In the diagram, A and B are two fixed points at a distance of I m apart on a smooth horizontal

wire. A bead of mass 0.25kg is threaded on the wire. When the bead is at any point P on the

wire it i attracted towards A by a force of magnitude 3PA newtons and towards B by a force

of magnitude 2PB newtons (in these expressions PA and PB denote the distances between P

and A and P and B respectively, measured in metres). The point O where the bead is in

equilibrium s at a distance of d metres from A. The displacement of P from O in the direction

OB is denoted by x metres,

) Show that d = 0.4,

b) Show that the resultant of the above two forces on the bead when it is at P is —Sx in the
direction OB.

©) Attime 1 = 0 the bead is displaced a distance 0.1 m from O towards B and is released from
rest. Subsequently when it is moving with speed vm s~ it experiences a resistance to its
motion of magnitude 2.25v newtons. Show that

& Loty 20em0

s

d) Find the general solution of the differential equations in part ¢ and hence find the distance
of the bead from O at time 1

42 Find the general solution of the differential equation

&y _gdv
=5 =9 =+20y =60x+ 13 (WIEC)
Frel e + X 0 )
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